Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:36:13.379Z Has data issue: false hasContentIssue false

Modulating crack propagation in a multilayer stack with a super-layer

Published online by Cambridge University Press:  26 August 2015

Han Li*
Affiliation:
Technology Manufacture Group (TMG), Intel Corporation, Hillsboro, Oregon 97124, USA
Asad Iqbal
Affiliation:
Technology Manufacture Group (TMG), Intel Corporation, Hillsboro, Oregon 97124, USA
John D. Brooks
Affiliation:
Technology Manufacture Group (TMG), Intel Corporation, Hillsboro, Oregon 97124, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Quantitative characterization of interface adhesion and fracture properties of thin film materials is of fundamental and technological interests in modern technologies. Sandwich beam specimens used in fracture mechanics techniques, such as four-point bending and double-cantilever beam have been widely adopted, including the semiconductor industry. In this work, we highlight some of the challenges that these techniques are facing in characterizing ever thinner films and tough interfaces, and propose a simple strategy to address these challenges by engineering the stack structure of the specimen. We show that crack propagation in a multilayer stack can be controlled using a super-layer (SL) structure, and the dependence of the cracking behavior on the thickness and mechanical properties of the SL is studied. The effectiveness of the SL strategy is demonstrated for a range of technologically important material systems used in the on-chip interconnects of modern microprocessors, which represents one promising path to extend the industry-standard techniques to meet future characterization needs.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ingerly, D., Agraharam, S., Becher, D., Chikarmane, V., Fischer, K., Grover, R., Goodner, M., Haight, S., He, J., Ibrahim, T., Joshi, S., Kothari, H., Lee, K., Lin, Y., Litteken, C., Liu, H., Mays, E., Moon, P., Mule, T., Nolen, S., Patel, N., Pradhan, S., Robinson, J., Ramanarayanan, P., Sattiraju, S., Schroeder, T., Williams, S., and Yashar, P.: Low-k interconnect stack with thick metal 9 redistribution layer and Cu die bump for 45 nm high volume manufacturing. In International Interconnect Technology Conference, 2008. (IEEE, Burlingame, CA, 2008); p. 216.CrossRefGoogle Scholar
Ingerly, D., Agrawal, A., Ascazubi, R., Blattner, A., Buehler, M., Chikarmane, V., Choudhury, B., Cinnor, F., Ege, C., Ganpule, C., Glassman, T., Grover, R., Hentges, P., Hicks, J., Jones, D., Kandas, A., Khan, H., Lazo, N., Lee, K.S., Liu, H., Madhavan, A., McFadden, R., Mule, T., Parsons, D., Parthangal, P., Rangaraj, S., Rao, D., Roesler, J., Schmitz, A., Sharma, M., Shin, J., Shusterman, Y., Speer, N., Tiwari, P., Wang, G., Yashar, P., and Mistry, K.: Low-k interconnect stack with metal-insulator-metal capacitors for 22 nm high volume manufacturing. In IEEE International Interconnect Technology Conference (IITC), 2012. (IEEE, San Jose, CA 2012); p. 1.Google Scholar
Borkar, R., Bohr, M., and Jourdan, S.: Advancing Moore's Law in 2014 (Intel Corporation, 2014).Google Scholar
Wang, G., Ho, P.S., and Groothuis, S.: Chip-packaging interaction: A critical concern for Cu/low k packaging. Microelectron. Reliab. 45(7–8), 1079 (2005).CrossRefGoogle Scholar
Odegard, C., Tz-Cheng, C., Hartfield, C., and Sundararaman, V.: Dielectric integrity test for flip-chip devices with Cu/low-k interconnects. In Proceedings of the 55th Electronic Components and Technology Conference, 2005. (IEEE, Lake Buena Vista, FL, 2005); p. 1163.Google Scholar
Zhai, C.J., Ozkan, U., Dubey, A., Sidharth, , Blish, R.C., and Master, R.N.: Investigation of Cu/low-k film delamination in flip chip packages. In Proceedings of the 56th Electronic Components and Technology Conference, 2006. (IEEE, San Diego, CA, 2006); 9 pp.Google Scholar
Liu, X.H., Shaw, T.M., Lane, M.W., Liniger, E.G., Herbst, B.W., and Questad, D.L.: Chip-package-interaction modeling of ultra low-k/copper back end of line. In IEEE International Interconnect Technology Conference, 2007. (IEEE, Burlingame, CA, 2007); p. 13.Google Scholar
Li, H., Shaw, T.M., Liu, X-H., and Bonilla, G.: Delayed mechanical failure of the under-bump interconnects by bump shearing. J. Appl. Phys. 111(8), 083503 (2012).Google Scholar
Li, H., Tsui, T.Y., and Vlassak, J.J.: Water diffusion and fracture behavior in nanoporous low-k dielectric film stacks. J. Appl. Phys. 106(3), 033503 (2009).Google Scholar
Lane, M., Liniger, E., and Lloyd, J.: Relationship between interfacial adhesion and electromigration in Cu metallization. J. Appl. Phys. 93(3), 1417 (2003).CrossRefGoogle Scholar
Zhou, Y., Scherban, T., Xu, G., He, J., Miner, B., Jan, C.H., Ott, A., O'Loughlin, J., Ingerly, D., and Leu, J.: Impact of interfacial chemistry on adhesion and electromigration in Cu interconnects. In Advanced Metallization Conference (AMC). (Materials Research Society, Warrendale, PA, 2004); p. 189.Google Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654 (2011).Google Scholar
Wu, Z., Zhang, Y-W., Jhon, M.H., Gao, H., and Srolovitz, D.J.: Nanowire failure: Long = brittle and short = ductile. Nano Lett. 12(2), 910 (2012).CrossRefGoogle ScholarPubMed
Kraft, O., Gruber, P.A., Mönig, R., and Weygand, D.: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40(1), 293 (2010).Google Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).Google Scholar
Hirakata, H., Nishijima, O., Fukuhara, N., Kondo, T., Yonezu, A., and Minoshima, K.: Size effect on fracture toughness of freestanding copper nano-films. Mater. Sci. Eng., A 528(28), 8120 (2011).Google Scholar
Hosokawa, H., Desai, A.V., and Haque, M.A.: Plane stress fracture toughness of freestanding nanoscale thin films. Thin Solid Films 516(18), 6444 (2008).Google Scholar
Hutchinson, J.W. and Suo, Z.: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1991).Google Scholar
Evans, A. and Hutchinson, J.: The thermomechanical integrity of thin films and multilayers. Acta Metall. Mater. 43(7), 2507 (1995).Google Scholar
Volinsky, A., Moody, N., and Gerberich, W.: Interfacial toughness measurements for thin films on substrates. Acta Mater. 50(3), 441 (2002).Google Scholar
Volinsky, A.A., Moody, N.R., and Gerberich, W.W.: Superlayer residual stress effect on the indentation adhesion measurements. In MRS Proceedings, Vol. 594. (Materials Research Society, Warrendale, PA, 1999); p. 383.Google Scholar
Bagchi, A., Lucas, G., Suo, Z., and Evans, A.: A new procedure for measuring the decohesion energy for thin ductile films on substrates. J. Mater. Res. 9(07), 1734 (1994).Google Scholar
Birringer, R.P., Chidester, P.J., and Dauskardt, R.H.: High yield four-point bend thin film adhesion testing techniques. Eng. Fract. Mech. 78(12), 2390 (2011).CrossRefGoogle Scholar
Ma, Q.: A four-point bending technique for studying subcritical crack growth in thin films and at interfaces. J. Mater. Res. 12(03), 840 (1997).Google Scholar
Li, H., Kobrinsky, M.J., Shariq, A., Richards, J., Liu, J., and Kuhn, M.: Controlled fracture of Cu/ultralow-k interconnects. Appl. Phys. Lett. 103(23), 231901-1-231901-5 (2013).Google Scholar
Scherban, T., Xu, G., Merrill, C., Litteken, C., and Sun, B.: Fracture of low-k dielectric films and interfaces. In AIP Conference Proceedings, Vol. 817. (American Institute of Physics Publishing LLC, Dresden, Germany, 2006); 2006; p. 83.Google Scholar
Kanninen, M.: An augmented double cantilever beam model for studying crack propagation and arrest. Int. J. Fract. 9(1), 83 (1973).Google Scholar
Hsueh, C.H., Tuan, W.H., and Wei, W.C.J.: Analyses of steady-state interface fracture of elastic multilayered beams under four-point bending. Scr. Mater. 60(8), 721 (2009).CrossRefGoogle Scholar
Dauskardt, R., Lane, M., Ma, Q., and Krishna, N.: Adhesion and debonding of multi-layer thin film structures. Engineering Fracture Mechanics 61(1), 141 (1998).Google Scholar
Kausch, H-H. and Williams, J.G.: Fracture. In Encyclopedia of Polymer Science and Technology. (John Wiley & Sons, Inc., Hoboken, NJ, 2002).Google Scholar
Hauschildt, M., Hintze, B., Gall, M., Koschinsky, F., Preusse, A., Bolom, T., Nopper, M., Beyer, A., Aubel, O., and Talut, G.: Advanced metallization concepts and impact on reliability. Jpn. J. Appl. Phys. 53(5S2), 05GA11 (2014).Google Scholar
Jezewski, C.J., Clarke, J.S., Indukuri, T.K., Gstrein, F., and Zierath, D.J.: Cobalt Based Interconnects and Methods of Fabrication Thereof (Google Patents, Alexandria, VA, 2012).Google Scholar
Yang, C., Baumann, F., Wang, P-C., Lee, S., Ma, P., AuBuchon, J., and Edelstein, D.: Characterization of copper electromigration dependence on selective chemical vapor deposited cobalt capping layer thickness. IEEE Electron Device Lett. 32(4), 560 (2011).Google Scholar
He, M.Y., Evans, A.G., and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses. Int. J. Solids Struct. 31(24), 3443 (1994).CrossRefGoogle Scholar
Ming-Yuan, H. and Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053 (1989).Google Scholar
Zhang, Z. and Suo, Z.: Split singularities and the competition between crack penetration and debond at a bimaterial interface. Int. J. Solids Struct. 44(13), 4559 (2007).Google Scholar
Roham, S. and Hight, T.: Role of residual stress on crack penetration and deflection at a bimaterial interface in a 4-point bend test. Microelectron. Eng. 84(1), 72 (2007).Google Scholar
Hutchinson, J. and Evans, A.: Mechanics of materials: Top-down approaches to fracture. Acta Mater. 48(1), 125 (2000).Google Scholar
Lane, M., Dauskardt, R.H., Vainchtein, A., and Gao, H.: Plasticity contributions to interface adhesion in thin-film interconnect structures. J. Mater. Res. 15(12), 2758 (2000).Google Scholar