Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T22:42:43.548Z Has data issue: false hasContentIssue false

A modified citrate gel route for the synthesis of phase pure Bi2Sr2CaCu2O8 superconductor

Published online by Cambridge University Press:  03 March 2011

Sujatha P. Devi
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
H.S. Maiti
Affiliation:
Electroceramics Laboratory, Central Glass & Ceramic Research Institute, Calcutta 700 032, India
Get access

Abstract

A simple method for the bulk synthesis of 80 K bismuth-based superconducting phase (2212) is described. It employs a modified citrate gel route giving rise to an auto-ignited combustion process. The precursor ash obtained after combustion is further calcined at 800 °C to produce the desired superconducting powder with excellent homogeneity and fineness, leading to good sinterability and fairly sharp transition temperature. For a particular citrate-nitrate ratio, the nature of combustion of the gels containing two different bases has been compared. The thermal decomposition characteristics of the gels and the plausible mechanism of formation of the superconducting phase are also described.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ravindranathan, P., Komarneni, S., Bhalla, A. S., and Roy, R., Mater. Lett. 10, 153 (1990).CrossRefGoogle Scholar
2Zhuang, H. R., Kozuka, H., and Sakka, S., J. Mater. Sci. 25, 4762 (1990).CrossRefGoogle Scholar
3Masuda, Y., Ogawa, R., Kawate, Y., Tateishi, T., and Hara, N., J. Mater. Res. 7, 292 (1992).CrossRefGoogle Scholar
4Ma, K. and Pierre, A. C., J. Mater. Res. 7, 1328 (1992).CrossRefGoogle Scholar
5Shei, C. Y., Koo, H. S., and Tseng, T. Y., J. Mater. Sci. 26, 4427 (1991).Google Scholar
6Chen, F. H., Koo, H. S., and Tseng, T. Y., J. Mater. Sci. 25, 3338 (1990).CrossRefGoogle Scholar
7Mani, T. V., Varma, H. K., Warrier, K. G. K., and Damodaran, A. D., Br. Ceram. Trans. J. 91, 120 (1992).Google Scholar
8Wang, Z., Statt, B. W., Lee, M. J. G., Bagheri, S., and Rutter, J., J. Mater. Res. 6, 1160 (1991).CrossRefGoogle Scholar
9Heh, T. S., Chen, J. R., and Tseng, T. Y., Jpn. J. Appl. Phys. 29, 652 (1990).Google Scholar
10Wang, N. H., Wang, C. M., Kao, H. C. I., Ling, D. C., Ku, H. C., and Lu, K. H., Jpn. J. Appl. Phys. 28, L1505 (1989).CrossRefGoogle Scholar
11Liu, R. S., Wang, W. N., Chang, C. T., and Wu, P. T., Jpn. J. Appl. Phys. 28, L2155 (1989).CrossRefGoogle Scholar
12Aoki, A., Jpn. J. Appl. Phys. 29, L270 (1990).CrossRefGoogle Scholar
13Chen, T. M. and Hu, Y. H., J. Solid State Chem. 97, 124 (1992).CrossRefGoogle Scholar
14Devi, P. S. and Maiti, H. S., J. Solid State Chem. (April 1994).Google Scholar
15Roy, S., Das Sharma, A., Roy, S. N., and Maiti, H. S., J. Mater. Res. 8, 2761 (1993).CrossRefGoogle Scholar
16Pederson, L. R., Maupin, G. D., Weber, W. J., McReady, D.J., and Stephens, R.W., Mater. Lett. 10, 437 (1990).CrossRefGoogle Scholar
17Rambabu, D., Jpn. J. Appl. Phys. 29, L507 (1990).CrossRefGoogle Scholar
18Paz-Pujatt, G., Physica C 166, 177 (1990).CrossRefGoogle Scholar
19Fran, Y. S., Koo, H. S., Chen, F. H., Huang, C. J., and Tseng, Y. T., J. Mater. Sci. Lett. 9, 58 (1990).Google Scholar