Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-15T22:17:54.405Z Has data issue: false hasContentIssue false

Modeling of contact-induced radial cracking in ceramic bilayer coatings on compliant substrates

Published online by Cambridge University Press:  31 January 2011

Chun-Hway Hsueh
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
Pedro Miranda
Affiliation:
Departamento Electróa e Ingenierí Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Get access

Abstract

Contact-induced radial cracking in ceramic coatings on compliant substrates was analyzed recently. Radial cracks initiate at the coating/substrate interface beneath the contact where maximum flexural tension occurs, and an analytical expression for the onset of radial cracking in monolayer coatings was formulated on the basis of the classical solution for flexing plates on elastic foundation. In the present study, the analytical expression was derived for the case of ceramic bilayer coatings on compliant substrates, which have significant applications in the structure of dental crowns. It was found that the analytical solution for bilayer-coating/substrate systems can be obtained from that of monolayer-coating/substrate systems by replacing the neutral surface position and the flexural rigidity of monolayer coating with those of bilayer coating. The predicted critical loads for initiating radial cracking were found to be in good agreement with existing measurements and finite element results for glass/alumina, glass/glass-ceramic, and glass/Y2O3-stabilized ZrO2 polycrystal bilayers on polycarbonate substrates. Limitations of the present analysis are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nix, W.D., Metall. Trans. 20A, 2217 (1989).Google Scholar
2.Hu, S.M., J. Appl. Phys. 70, R53 (1991).Google Scholar
3.Evans, A.G. and Hutchinson, J.W., Acta Metall. Mater. 43, 2507 (1995).CrossRefGoogle Scholar
4.Johnson, K.L., Contact Mechanics (Cambridge University Press, London, U.K., 1985).CrossRefGoogle Scholar
5.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
6.Lawn, B.R., Padture, N.P., Cai, H., and Guiberteau, F., Science 263, 1114 (1994).CrossRefGoogle Scholar
7.Scherrer, S.S. and Rijk, W.G., Int. J. Prosthodontics 6, 462 (1993).Google Scholar
8.Liu, H., Lawn, B.R., and Hsu, S.M., J. Am. Ceram. Soc. 79, 1009 (1996).CrossRefGoogle Scholar
9.Chai, H., Lawn, B.R., and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
10.Rhee, Y.W., Kim, H.W., Deng, Y., and Lawn, B.R., J. Am. Ceram. Soc. 84, 1066 (2001).Google Scholar
11.Kim, H.W., Deng, Y., Miranda, P., Pajares, A., Kim, D.K., Kim, H.E., and Lawn, B.R., J. Am. Ceram. Soc. 84, 2377 (2001).Google Scholar
12.Chai, H. and Lawn, B.R., Acta Mater. 50, 2613 (2002).Google Scholar
13.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., J. Mater. Res. 16, 115 (2001).CrossRefGoogle Scholar
14.Lawn, B.R., Deng, Y., Miranda, P., Pajares, A., Chai, H., and Kim, D.K., J. Mater. Res. 17, 3019 (2002).CrossRefGoogle Scholar
15.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., and Lawn, B.R., Acta Mater. 49, 3719 (2001).CrossRefGoogle Scholar
16.Timoshenko, S. and Woinowsky, S.-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959).Google Scholar
17.Chai, H. and Lawn, B.R., J. Mater. Res. 15, 1017 (2000).CrossRefGoogle Scholar
18.Hsueh, C.H., Kim, J.H., and Kim, D.K., J. Mater. Res. (2003, in press).Google Scholar
19.Hsueh, C.H. and Evans, A.G., J. Am. Ceram. Soc. 68, 241 (1985).CrossRefGoogle Scholar
20.Hsueh, C.H., J. Am. Ceram. Soc. 74, 1646 (1991).Google Scholar
21.Hsueh, C.H., J. Appl. Phys. 92, 144 (2002).Google Scholar
22.Yang, F., J. Phys. D: Appl. Phys. 36, 50 (2003).CrossRefGoogle Scholar
23.Kelly, J.R., J. Prosthet. Dent. 81, 652 (1999).Google Scholar