Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T18:52:48.096Z Has data issue: false hasContentIssue false

Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires

Published online by Cambridge University Press:  07 June 2011

Yaqoob Khan*
Affiliation:
National Centre for Nanotechnology, Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan
Shahid Khan Durrani
Affiliation:
Materials Division, Pakistan Institute of Nuclear Science and Technology, Islamabad 45650, Pakistan
Mazhar Mehmood
Affiliation:
National Centre for Nanotechnology, Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan
Muhammad Riaz Khan
Affiliation:
Centralized Resource Laboratory, University of Peshawar, Peshawar 25000, Pakistan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Urchin-like γ-MnO2 nanostructures, composed of nanowires with diameters in the range 40–70 nm were prepared through the direct reaction between MnSO4 and KClO3 via a mild hydrothermal route. Reaction time and temperature were found to influence both the phase and morphology of as-prepared products. For longer reaction times, the initially formed γ-phase transformed to α-MnO2 nanowires along with the loss of urchin-like morphology. Powder x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetry and differential scanning calorimetry were used to characterize the as-prepared products. On the basis of XRD patterns and SEM images, a possible growth mechanism for the time-dependant morphological evolution of various MnO2 nanostructures has been suggested and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ramesh, K., Chen, L., Chen, F., Liu, Y., Wang, Z., and Han, Y.-F.: Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal. Today 131, 477 (2008).CrossRefGoogle Scholar
2.Bai, Y.-H., Du, Y., Xu, J.-J., and Chen, H.-Y.: Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2. Electrochem. Commun. 9, 2611 (2007).CrossRefGoogle Scholar
3.Cheng, F., Zhao, J., Song, W., Li, C., Ma, H., Chen, J., and Shen, P.: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038 (2006).CrossRefGoogle ScholarPubMed
4.Li, B., Rong, G., Xie, Y., Huang, L., and Feng, C.: Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404 (2006).CrossRefGoogle ScholarPubMed
5.Li, L., Chu, Y., Liu, Y., and Dong, L.: Synthesis and shape evolution of novel cuniform-like MnO2 in aqueous solution. Mater. Lett. 61, 1609 (2007).CrossRefGoogle Scholar
6.Wei, M., Konishi, Y., Zhou, H., Sugihara, H., and Arakawa, H.: Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology 16, 245 (2005).CrossRefGoogle ScholarPubMed
7.Zhang, Q.-H., Sun, S., Li, S., Jiang, H., and Yu, J.-G.: Adsorption of lithium ions on novel nanocrystal MnO2. Chem. Eng. Sci. 62, 4869 (2007).CrossRefGoogle Scholar
8.Zhang, Y.C., Qiao, T., Hu, X.Y., and Zhou, W.D.: Simple hydrothermal preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO2 nanowires. J. Cryst. Growth 280, 652 (2005).CrossRefGoogle Scholar
9.Sugantha, M., Ramakrishnan, P.A., Hermann, A.M., Warmsingh, C.P., and Ginley, D.S.: Nanostructured MnO2 for Li batteries. Int. J. Hydrogen Energy 28, 597 (2003).CrossRefGoogle Scholar
10.Yang, L.-X., Zhu, Y.-J., Wang, W.-W., Tong, H., and Ruan, M.-L.: Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. J. Phys. Chem. B 110, 6609 (2006).CrossRefGoogle ScholarPubMed
11.Xiao, W., Xia, H., Fuh, J.Y.H., and Lu, L.: Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal route and their electrochemical properties. J. Power Sources 193, 935 (2009).CrossRefGoogle Scholar
12.Lee, H.Y. and Goodenough, J.B.: Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220 (1999).CrossRefGoogle Scholar
13.Chou, S., Cheng, F., and Chen, J.: Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J. Power Sources 162, 727 (2006).CrossRefGoogle Scholar
14.Xie, J., Li, X., Yu, Z.H., Zhang, L.J., Li, F., and Xia, D.G.: Synthesis and study of λ-MnO2 supported Pt nanocatalyst for methanol electro-oxidation. Rare Met. 29, 187 (2010).CrossRefGoogle Scholar
15.Yan, D.W. and Wang, C.R.: The controllable syntheses and electrochemical study of 1-dimensional nanowires, 2-dimensional nanoplatelets, and 3-dimensional nanotowers of MnO2. J. Nanosci. Nanotechnol. 7, 2487 (2007).CrossRefGoogle ScholarPubMed
16.Li, Y.P., Zhou, X.Q., Zhou, H.J., Shen, Z.R., and Chen, T.H.: Hydrothermal preparation of nanostructured MnO2 and morphological and crystalline evolution. Front. Chem. China 3, 128 (2007).CrossRefGoogle Scholar
17.Xu, N.C., Liu, Z.H., Ma, X.R., Qiao, S.F., and Yuan, J.Q.: Controlled synthesis and characterization of layered manganese oxide nanostructures with different morphologies. J. Nanopart. Res. 11, 1107 (2009).CrossRefGoogle Scholar
18.Xia, H., Xiao, W., Lai, M.O., and Lu, L.: Facile synthesis of novel nanostructured MnO2 thin films and their application in supercapacitors. Nanoscale Res. Lett. 4, 1035 (2009).CrossRefGoogle ScholarPubMed
19.Ul Islam, A., Islam, R., and Khan, K.A.: Studies on the thermoelectric effect in semiconducting MnO2 thin films. J. Mater. Sci.- Mater. Electron. 16, 203 (2005).CrossRefGoogle Scholar
20.Wang, X. and Li, Y.: Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880 (2002).CrossRefGoogle Scholar
21.Song, X.C., Zhao, Y., and Zheng, Y.F.: Synthesis of MnO2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process. Cryst. Growth Des. 7, 159 (2007).CrossRefGoogle Scholar
22.Zhou, M., Zhang, X., Wei, J., Zhao, S., Wang, L., and Feng, B.: Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115, 1398 (2010).CrossRefGoogle Scholar
23.Zhang, Z. and Mu, J.: Hydrothermal synthesis of γ-MnOOH nanowires and α-MnO2 sea urchin-like clusters. Solid State Commun. 141, 427 (2007).CrossRefGoogle Scholar
24.Xu, M., Kong, L., Zhou, W., and Li, H.: Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 111, 19141 (2007).CrossRefGoogle Scholar
25.Liu, Y., Zhang, M., Zhang, J., and Qian, Y.: A simple method of fabricating large-area α-MnO2 nanowires and nanorods. J. Solid State Chem. 179, 1757 (2006).CrossRefGoogle Scholar
26.Shen, X.F., Ding, Y.S., Hanson, J.C., Aindow, M., and Suib, S.L.: In situ synthesis of mixed-valent manganese oxide nanocrystals: An in situ synchrotron x-ray diffraction study. J. Am. Chem. Soc. 128, 4570 (2006).CrossRefGoogle Scholar
27.Portehault, D., Cassaignon, S., Baudrin, E., and Jolivet, J.P.: Morphology control of cryptomelane type MnO2 nanowires by soft chemistry. Growth mechanisms in aqueous medium. Chem. Mater. 19, 5410 (2007).CrossRefGoogle Scholar
28.Wang, H.G., Lu, Z.G., Qian, D., Li, Y.J., and Zhang, W.: Single-crystal α-MnO2 nanorods: Synthesis and electrochemical properties. Nanotechnology 18, 115616 (2007).CrossRefGoogle Scholar
29.Umek, P., Gloter, A., Pregelj, M., Dominko, R., Jagodic, M., Jaglicic, Z., Zimina, A., Brzhezinskaya, M., Potocnik, A., Filipic, C., Levstik, A., and Arcon, D.: Synthesis of 3D hierarchical self-assembled microstructures formed from α-MnO2 nanotubes and their conducting and magnetic properties. J. Phys. Chem. C 113, 14798 (2009).CrossRefGoogle Scholar
30.Yu, P., Zhang, X., Wang, D.L., Wang, L., and Ma, Y.W.: Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Cryst. Growth Des. 9, 528 (2009).CrossRefGoogle Scholar
31.Wu, J., Zhang, H., Ma, X., Li, J., Sun, F., Du, N., and Yang, D.: Synthesis and characterization of single crystalline MnOOH and MnO2 nanorods by means of the hydrothermal process assisted with CTAB. Mater. Lett. 60, 3895 (2006).CrossRefGoogle Scholar
32.Wang, X. and Li, Y.: Rational synthesis of α-MnO2 single-crystal nanorods. Chem. Commun. 7, 764 (2002).CrossRefGoogle Scholar
33.Subramanian, V., Zhu, H.W., Vajtai, R., Ajayan, P.M., and Wei, B.Q.: Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 109, 20207 (2005).CrossRefGoogle ScholarPubMed
34.Li, L.P., Pan, Y.Z., Chen, L.J., and Li, G.S.: One-dimensional α-MnO2: Trapping chemistry of tunnel structures, structural stability, and magnetic transitions. J. Solid State Chem. 180, 2896 (2007).CrossRefGoogle Scholar
35.Li, B.X., Rong, G.X., Xie, Y., Huang, L.F., and Feng, C.Q.: Low-temperature synthesis of α-MnO2 hollow urchins and their application in rechargeable Li+ batteries. Inorg. Chem. 45, 6404 (2006).CrossRefGoogle ScholarPubMed
36.Hashem, A.M.A.: Preparation, characterization and electrochemical performance of γ-MnO2 and LiMn2O4 as cathodes for lithium batteries. Ionics 10, 206 (2004).CrossRefGoogle Scholar
37.Jia, Z., Yuping, D., Hui, J., Xiaogang, L., and Shunhua, L.: The morphology and electromagnetic properties of MnO2 obtained in 8 T high magnetic field. J. Cryst. Growth 312, 2788 (2010).CrossRefGoogle Scholar
38.Wu, C.Z., Xie, Y., Wang, D., Yang, J., and Li, T.W.: Selected-control hydrothermal synthesis of γ-MnO2 3D nanostructures. J. Phys. Chem. B 107, 13583 (2003).CrossRefGoogle Scholar
39.Wang, X. and Li, Y.D.: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chemistry 9, 300 (2003).CrossRefGoogle ScholarPubMed
40.Wang, X. and Li, Y.D.: Solution-based routes to transition-metal oxide one-dimensional nanostructures. Pure Appl. Chem. 78, 45 (2006).CrossRefGoogle Scholar
41.Shen, Y.-F., Suib, S.L., and O’Young, C.-L.: Effects of inorganic cation templates on octahedral molecular sieves of manganese oxide. J. Am. Chem. Soc. 116, 11020 (1994).CrossRefGoogle Scholar