Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T16:37:36.349Z Has data issue: false hasContentIssue false

Microwave-Induced Combustion Synthesis of Nanocrystalline TiO2–SiO2 Binary Oxide Material

Published online by Cambridge University Press:  03 March 2011

I. Ganesh*
Affiliation:
Ceramic Materials Division, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur (PO), Hyderabad 500 005, India
R. Johnson
Affiliation:
Ceramic Materials Division, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur (PO), Hyderabad 500 005, India
Y.R. Mahajan
Affiliation:
Ceramic Materials Division, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur (PO), Hyderabad 500 005, India
A. Khan
Affiliation:
Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
S.S. Madhavendra
Affiliation:
Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
B.M. Reddy
Affiliation:
Inorganic and Physical Chemistry Division, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
*
a)Address all correspondence to this author. e-mail: [email protected], [email protected], [email protected]
Get access

Abstract

A nanocrystalline titania–silica (1:1 molar ratio) binary oxide material was synthesized by microwave-induced combustion process in a modified domestic microwave oven (operated at 2.45 GHz frequency and 700 W power) in approximately 60 min from in situ synthesized titanyl nitrate and siliconyl nitrate using urea as fuel. For the sake of comparison, two different types of TiO2–SiO2 powders were also synthesized by the sol-gel and the co-precipitation methods. All the synthesized powders were characterized with the help of thermogravimetriy/differential thermal analysis, x-ray diffraction, transmission electron microscopy (TEM), and Brunauer–Emmett–Teller surface area measurements and the results compared. The as-synthesized TiO2–SiO2 powder obtained by the combustion process showed an average crystallite size of 10 nm and the specific surface area of 115 m2g-1. Among the three differently synthesized TiO2-SiO2 powders, only the microwave-induced combustion synthesis yielded crystalline material. TEM in particular confirmed the presence of nano-sized particles in the microwave-induced combustion-synthesized powder. Among the three analogies, microwave synthesis was found to be superior in terms of ease of processing leading to time and power savings.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hayashi, T., Yamada, T. and Saito, H.: Preparation of titania-silica glasses by the gel method. J. Mater. Sci. 18, 3137 (1983).CrossRefGoogle Scholar
2Yu-Zhang, K., Boisjolly, G., Rivory, J., Kilian, L. and Colliex, C.: Characterization of TiO2/SiO2 multi layers by high resolution transmission electron microscopy and electron energy loss spectroscopy. Thin Solid Films. 253, 299 (1994).Google Scholar
3Gao, X. and Wachs, I.E.: Titania-silica as catalysts: Molecular structural characteristics and physico-chemical properties. Catal. Today. 51, 233 (1999).CrossRefGoogle Scholar
4Wagemaker, M., Kearley, G.J., van Well, A.A., Mutka, H. and Mulder, F.M.: Multiple Li positions inside oxygen octahedra in lithiated TiO2 anatase. J. Am. Chem. Soc. 125, 840 (2003).CrossRefGoogle ScholarPubMed
5Atik, M. and Zarzycki, J.: Protective TiO2-SiO2 coatings on stainless steel sheets prepared by dip-coating. J. Mater. Sci. Lett. 13, 1301 (1994).CrossRefGoogle Scholar
6Kormann, C., Bahnemann, D.W. and Hoffmann, M.R.: Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196 (1988).Google Scholar
7Matsuda, S. and Kato, A.: Titanium oxide based catalysts: A review. Appl. Catal. 8, 149 (1983).Google Scholar
8Reddy, B.M., Ganesh, I. and Reddy, E.P.: Study of dispersion and thermal stability of V2O5/TiO2-SiO2 catalysts by XPS and other techniques. J. Phys. Chem. B. 101, 1769 (1997).Google Scholar
9Reddy, B.M., Reddy, E.P. and Ganesh, I.: Vapour phase synthesis of isobutyraldehyde from methanol and ethanol over mixed oxide supported vanadium oxide catalysts. Res. Chem. Interm. 23, 703 (1997).CrossRefGoogle Scholar
10Reddy, B.M., Ganesh, I., and Chowdhury, B.: Vapour-phase selective oxidation of 4-methylanisole to anisaldehyde over V2O5/Ga2O3-TiO2. Chem. Lett. 1145–1147 (1997).Google Scholar
11Dias, C.R., Portela, M.F., Galan-Fereres, M., Banares, M.A., Granados, M.L., Pena, M.A. and Fierro, J.L.G.: Selective oxidation of o-xylene to phthalicanhydride on V2O5 supported on TiO2 coated SiO2. Catal. Lett. 43, 117 (1997).Google Scholar
12Hutter, R., Mallat, T. and Baiker, A.: Titiania-silica mixed oxides: II. Catalytic behavior in olefene oxidation. J. Catal. 153, 177 (1995).CrossRefGoogle Scholar
13Hutter, R., Mallat, T. and Baiker, A.: Amorphous microporous titania–silica mixed oxides: Preparation, characterization, and catalytic redox properties. J. Catal. 163, 476 (1996).Google Scholar
14Hung, C.H. and Katz, J.L.: Formation of mixed oxide powders in flames: Part I. TiO2-SiO2. J. Mater. Res. 7, 1861 (1992).CrossRefGoogle Scholar
15Hung, C.H., Miquel, P.F. and Katz, J.L.: Formation of mixed oxide powders in flames: Part II: Al2O3-TiO2 and GeO2-SiO2. J. Mater. Res. 7, 1870 (1992).Google Scholar
16Stark, W.J., Pratsinis, S.E. and Baiker, A.: Flame made titania/silica epoxidation catalysts. J. Catal. 203, 516 (2001).Google Scholar
17Stark, W.J., Kammler, H.K., Strobel, R., Gunther, D., Baiker, A. and Pratsinis, S.E.: Flame made titania/silica epoxidation catalysts: Towards large scale production. Ind. Eng. Chem. Res. 41, 49214927 (2002).CrossRefGoogle Scholar
18 K.I. Hadjivanov and D.G. Klissurski: Surface chemistry of titania (anatase) and titania-supported catalysts. Chem. Soc. Rev. 61 (1996).Google Scholar
19 Handbuch der Praparativen Anorganischen Cheme, edited by Brauer, G. (Ferdinand Enke Verlag, Stuttgart, Germany, 1975)Google Scholar
20Li, B. and Gonzalez, R.D.: Sol-gel synthesis and catalytic properties of sulfated zirconia catalysts. 35, 3141 (1996).Google Scholar
21Yoldas, B.E.: Technological significance of sol-gel process and process-induced variations in sol-gel materials and coatings. J. Sol-Gel Sci. Technol. 1, 65 (1993).CrossRefGoogle Scholar
22Qi, X., Zhou, J., Yue, Z., Gui, Z. and Li, L.: A simple way to prepare nanosized LaFeO3 powders at room temperature. Ceram. Int. 29, 347 (2003).CrossRefGoogle Scholar
23Merzanov, A.G.: Theory and practice of SHS: worldwide state of the art and the newest results. Int. J. Self-Propagat. High Temp. Synth. 2, 113 (1993).Google Scholar
24Patil, K.C., Aruna, S.T. and Ekambaram, S.: Combustion synthesis. J. Curr. Opin. Solid State Mater. Sci. 2, 158 (1997).CrossRefGoogle Scholar
25Ganesh, I., Srinivas, B., Johnson, R., Saha, B.P. and Mahajan, Y.R.: Effect of fuel type on morphology and reactivity of combustion synthesized MgAl2O4 powders. Brit. Ceram. Trans. 101, 247 (2002).CrossRefGoogle Scholar
26Ganesh, I., Srinivas, B., Johnson, R., Rao, G.V.N. and Mahajan, Y.R.: Effect of preparation method on sinterability and properties of nanocrystalline MgAl2O4 and ZrO2-MgAl2O4 materials. Brit. Ceram. Trans. 102, 1 (2003).Google Scholar
27R.H.G.A, Kiminami, , Morelli, M.R., Folz, D.C. and Clark, D.E.: Microwave synthesis of alumina powders. Bull. Am. Ceram. Soc. 79, 63 (2000).Google Scholar
28Ganesh, I., Srinivas, B., Johnson, R., Saha, B.P. and Mahajan, Y.R.: Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J. Euro. Ceram. Soc. 24, 201 (2004).CrossRefGoogle Scholar
29Ganesh, I., Johnson, R., Saha, B.P., Rao, G.V.N. and Mahajan, Y.R.: Microwave assisted combustion synthesis of nano-crystalline MgAl2O4 spinel powders. Ceramics International. 2004 ((In press)Google Scholar
30Mingos, D.M.P. and Baghurst, D.R.: Application of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20, 1 (1991).Google Scholar
31Rao, K.J. and Ramesh, P.D.: Use of microwaves for the synthesis and processing of materials. Bull. Mater. Sci. 18, 447 (1995).Google Scholar
32Fu, Y-P. and Lin, C-H.: Preparation of CexZr1-xO2 powders by microwave-induced combustion process. J. Alloys Compd. 354, 232 (2003).CrossRefGoogle Scholar
33Ward, D.A. and Ko, E.I.: Review: Preparing Catalytic Materials by the sol-gel method. Ind. Eng. Chem. Res. 34, 421 (1995).CrossRefGoogle Scholar
34Miller, J.B., Rankin, S.E. and Ko, E.I.: Strategies in controlling the homogeneity of zirconia-silica aerogels: Effect of preparation on textural and catalytic properties. J. Catal. 148, 673 (1994).CrossRefGoogle Scholar
35Cullity, B.D.: Elements of XRD, 2nd ed. (Addison-Wesley, Reading, MA, 1978)Google Scholar
36Bera, P., Aruna, S.T., Patil, K.C. and Hegde, M.S.: Studies on Cu/CeO2: A new NO reduction catalyst. J. Catal. 186, 36 (1999).Google Scholar
37Purohit, R.D., Sharma, B.P., Pillai, K.T. and Tyagi, A.K.: Ultrafine ceria powders via glycine-nitrate combustion. Mater. Res. Bull. 36, 2711 (2001).CrossRefGoogle Scholar
38Marinsek, M., Zupan, K. and Maeek, J.: Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources. 106, 178 (2002).Google Scholar
39 Lange’s Handbook of Chemistry, 12th ed, edited by Dean, J.A. (McGraw-Hill, New York, 1979)Google Scholar
40 CRC Hand Book of Chemistry and Physics, 73rd ed., edited by Lide, D.R. (CRC Press, London, U.K., 1993)Google Scholar
41Peelamedu, R.D., Roy, R. and Agarwal, D.: Anisothermal reaction synthesis of garnets, ferrites, and spinels in microwave field. Mater. Res. Bull. 36, 2723 (2001).CrossRefGoogle Scholar
42Reddy, B.M. and Ganesh, I.: Characterization of La2O3-TiO2 and V2O5/La2O3-TiO2 catalysts and their activity for synthesis of 2,6-dimethylphenol. J. Mol. Catal. A. Chem. 169, 207 (2001).CrossRefGoogle Scholar
43Reddy, B.M., Ganesh, I., Reddy, E.P., Fernandez, A. and Smirniotis, P.G.: Surface characterization of Ga2O3-TiO2 and V2O5/Ga2O3-TiO2 catalysts. J. Phys. Chem. B. 105, 6227 (2001).CrossRefGoogle Scholar
44Samantaray, S.K. and Parida, K.M.: SO42−/TiO2-SiO2 mixed oxide catalyst: 2. Effect of the fluoride ion and calcination temperature on esterification of acetic acid. Appl. Catal. A: General. 211, 175 (2001).CrossRefGoogle Scholar
45Samantaray, S.K. and Parida, K.M.: Effect of phosphate ion on the textural and catalytic activity of titania–silica mixed oxide. Appl. Catal. A: General. 220, 9 (2001).Google Scholar
46Anderson, C. and Bard, A.J.: Improved photocatalytic activity and commercialization of mixed TiO2/SiO2 and TiO2/Al2O3 materials. J. Phys. Chem. 101, 2611 (1997).Google Scholar
47Khalil, K.M.S., Elsamahy, A.A. and Elanany, M.S.: Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium(IV) tetra- isopropoxide in sols of spherical silica particles. J. Colloid Interface Sci. 249, 359 (2002).Google Scholar