Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T16:03:35.311Z Has data issue: false hasContentIssue false

A microwave dielectric material for microstrip patch antenna substrate

Published online by Cambridge University Press:  26 September 2011

Qingwei Liao
Affiliation:
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
Lingxia Li*
Affiliation:
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
Ping Zhang
Affiliation:
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
Xiang Ding
Affiliation:
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
Xiang Ren
Affiliation:
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
Wei Zhang
Affiliation:
School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High quality factor and near-zero temperature coefficient of resonant frequency (τf) are the two key issues for a certain microwave dielectric material system used in microstrip patch antennas. ZnTiO3-based ceramics is a promising candidate for microstrip patch antennas. On inhibiting the decomposition of ZnTiO3 by adding sufficient amount of MgO, high quality factor microwave dielectric material (Zn0.7Mg0.3)TiO3 was obtained. The deviations between theoretical and observed dielectric polarizabilites, the packing fraction, and bond valence were calculated to analyze correlation between structure and properties of (Zn0.7Mg0.3)TiO3. TiO2 was added to adjust τf of (Zn0.7Mg0.3)TiO3, and 0.82(Zn0.7Mg0.3)TiO3–0.18TiO2 with an εr of 28.5, a Qf of 125,050 GHz, and a near-zero τf which satisfied the requirement as a substrate material for microstrip patch antenna was obtained at 1100 °C. In addition, a dielectric microstrip antenna was designed and fabricated using the proposed dielectric materials. The microstrip patch antenna exhibited a −34.96 dB return loss and a 1.05 voltage standing wave ratio at 2.5 GHz.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Singh, G.: Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Phys. Technol. 53, 17 (2010).CrossRefGoogle Scholar
2.Zhou, D., Wu, W., Wang, H., Jiang, Y., and Yao, X.: The two element antennas using BiNbO4 ceramics as the substrate. Mater. Sci. Eng., A 460461, 652 (2007).CrossRefGoogle Scholar
3.Chen, Y-B., Huang, C-L., and Lo, C-W.: Microwave dielectric properties and microstructures of La(Mg1/2Ti1/2)O3 with CuO-doped. Mater. Sci. Eng., B 128, 98 (2006).CrossRefGoogle Scholar
4.Huang, C.L. and Chiang, K.H.: Dielectric properties of B2O3-doped (1−x)LaAlO3–xSrTiO3 ceramic system at microwave frequency. Mater. Res. Bull. 37, 1941 (2002).CrossRefGoogle Scholar
5.Wu, L., Chen, Y.C., Chen, L.J., Chou, Y.P., and Tsai, Y.T.: Preparation and microwave characterization of BaxSr1-xTiO3 ceramics. Jpn. J. Appl. Phys. 38, 5612 (1999).CrossRefGoogle Scholar
6.Kim, H.T., Byun, J.D., and Kim, Y.: Microstructure and microwave dielectric properties of modified zinc titanates (I). Mater. Res. Bull. 33, 963 (1998).CrossRefGoogle Scholar
7.Kim, H.T., Byun, J.D., and Kim, Y.: Microstructure and microwave dielectric properties of modified zinc titanates (II). Mater. Res. Bull. 33, 975 (1998).CrossRefGoogle Scholar
8.Kim, H.T., Kim, S.H., Nahm, S., Byun, J.D., and Kim, Y.: Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron. J. Am. Ceram. Soc. 82, 3043 (1999).CrossRefGoogle Scholar
9.Kim, H.T., Nahm, S., Byun, J.D., and Kim, Y.: Low-fired (Zn, Mg)TiO3 microwave dielectrics. J. Am. Ceram. Soc. 82, 3476 (1999).CrossRefGoogle Scholar
10.Lee, W.S., Chen, W.T., Yang, T., Lee, Y.C., Lin, S.P., Su, C.Y., and Hu, C.L.: A study on co-firing between Zn0.9Mg0.1TiO3 and ZnO-based multilayer varistor. J. Eur. Ceram. Soc. 26, 3753 (2006).CrossRefGoogle Scholar
11.Lee, Y.C.: Dielectric properties and reliability of Zn0.95Mg0.05TiO3+0.25TiO2 MLCCs with different Pd/Ag ratios of electrodes. Int. J. Appl. Ceram. Technol. 7(1), 71 (2010).CrossRefGoogle Scholar
12.Hill, R.J. and Howard, C.J.: Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst. 20, 467 (1987).CrossRefGoogle Scholar
13.Courtney, W.E.: Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech. 18(8), 476 (1970).CrossRefGoogle Scholar
14.Kajfez, D., Chebolu, S., Abdul-Gaffoor, M.R., and Kishk, A.A.: Uncertainty analysis of the transmission-type measurement of Q-factor. IEEE Trans. Microwave Theory Tech. 47(3), 367 (1999).CrossRefGoogle Scholar
15.Dong, C. and Powder, X.: Windows-95-based program for powder X-ray diffraction data processing. J. Appl. Cryst. 32, 838 (1999).CrossRefGoogle Scholar
16.Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
17.Liferovich, R.P. and Mitchell, R.H.: Geikielite-ecandrewsite solid solutions: Synthesis and crystal structures of the Mg1-xZnxTiO3 (0≤x≤0.8) series. Acta Crystallogr., Sect. B: Struct. Sci. 60, 496 (2004).CrossRefGoogle Scholar
18.Baur, W.H.: Über die Verfeinerung der Kristllstrukturbestimmung einiger Vertreter des Rutityps: TiO2, SnO2, GeO2 und MgF2. Acta Crystallogr. 9, 515 (1956).CrossRefGoogle Scholar
19.Wang, Y., Li, L., Wu, X., Ling, M., and Yu, L.: Microwave dielectric properties of ceramics based on (Zn1-xMgx)TiO3 system. J. Chin. Ceram. Soc. 32(8), 911 (2004).Google Scholar
20.Shannon, R.D. and Rossman, G.R.: Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77, 94 (1992).Google Scholar
21.Kim, E.S., Kim, S.H., and Yoon, K.H.: Dependence of thermal stability on octahedral distortion of (1-x)(Ca0.3Li0.119Sm0.427)TiO3-xLnAlO3 (Ln=Nd, Sm) ceramics. J. Ceram. Soc. Jpn. 112(1305), 1645 (2004).Google Scholar
22.Kim, E.S. and Choi, W.: Effect of phase transition on the microwave dielectric properties of BiNbO4. J. Eur. Ceram. Soc. 26, 1761 (2006).CrossRefGoogle Scholar
23.Shannon, R.D. and Rossman, G.R.: Dielectric constants of silicate garnets and the oxide additivity rule. Am. Mineral. 77, 94 (1992).Google Scholar
24.Kim, E.S., Chun, B.S., Freer, R., and Cernik, R.J.: Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 30, 1731 (2010).CrossRefGoogle Scholar
25.Kim, E.S. and Jeon, C.J.: Dependence of microwave dielectric properties on structural characteristics of ilmenite, tri-rutile and wolframite ceramics. J. Adv. Dielectr. 1, 127 (2011).CrossRefGoogle Scholar
26.Kim, E.S., Chun, B.S., and Yoon, K.H.: Dielectric properties of [Ca1−x(Li1/2Nd1/2)x]1−yZnyTiO3 ceramics at microwave frequencies. Mater. Sci. Eng., B 99, 93 (2003).CrossRefGoogle Scholar
27.Park, H.S. and Yoon, K.H.: Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1-xCax)- [Fe0.5(Nb1-yTay)0.5]O3. J. Am. Ceram. Soc. 84(1), 99 (2001).CrossRefGoogle Scholar
28.Park, H.S., Yoon, K.H., and Kim, E.S.: Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. Mater. Chem. Phys. 79, 181 (2003).CrossRefGoogle Scholar
29.Brown, I.D. and Altermatt, D.: Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr., Sect. B: Struct. Sci. 41, 244 (1985).CrossRefGoogle Scholar
30.Liou, Y.C., Shiue, C.Y., and Weng, M.H.: Synthesis and properties of TiO2 added NiNb2O6 microwave dielectric ceramics using a simple process. J. Eur. Ceram. Soc. 29, 1165 (2009).CrossRefGoogle Scholar