Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T12:15:24.107Z Has data issue: false hasContentIssue false

Microstructures and mechanical properties of Sn–8.55Zn–0.45Al–XAg solders

Published online by Cambridge University Press:  31 January 2011

Chia-Wei Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Taiwan, Republic of China
Kwang-Lung Lin
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Taiwan, Republic of China
Get access

Abstract

The microstructure, melting point, and mechanical properties of Sn–8.55Zn–0.45Al–XAg lead-free solders were investigated. The Ag content of the solders investigated was 0–3 wt.%. The results indicate that the AgZn3 and Ag5Zn8 compounds are formed at the addition of Ag to Sn–8.55Zn–0.45Al solders. The adding of Ag also results in the formation of hypoeutectic structure, increasing the melting point of the solders and decreasing the ductility. Results of thermal analysis reveal that the Sn–8.55Zn–0.45Al–XAg solder has eutectic temperature at 198 °C when the addition of Ag is 0.5 wt.%. The eutectic solder exhibits greater tensile strength and higher ductility than the 63–Sn–37Pb solder.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jin, S., JOM 45(7), 13 (1993).CrossRefGoogle Scholar
2.Abtew, M. and Selvaduray, G., Mater. Sci. Eng. R 27, 95 (2000).CrossRefGoogle Scholar
3.Glazer, J., J. Electr. Mater. 23, 693 (1994).CrossRefGoogle Scholar
4.Suganuma, K. and Niihara, K., J. Mater. Res. 13, 2859 (1998).CrossRefGoogle Scholar
5.Glazer, J., Int. Mater. Rev. 40, 65 (1995).CrossRefGoogle Scholar
6.Harada, M. and Satoh, R., IEEE Trans. Comp. Hybrids Manuf. Technol. 13, 736 (1990).CrossRefGoogle Scholar
7.Xiao, L., Liu, J., Lai, Z., Ye, L., and Tholen, A., Proceedings International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces (IEEE, Broselton, Piscataway, NJ, 2000) pp. 145–151.Google Scholar
8.Morris, J.W. Jr., Freer Goldstein, J.L., and Mei, Z., JOM 45(7), 25 (1993).CrossRefGoogle Scholar
9.Raeder, C.H., Felton, L.E., Tanzi, V.A., and Knorr, D.B., J. Elect. Mater. 23, 611 (1994).CrossRefGoogle Scholar
10.Freer Goldstein, J.L. and Morris, J.W. Jr., Metall. Mater. Trans. A 25A, 2715 (1994).CrossRefGoogle Scholar
11.Miller, C.M., Anderson, I.E., and Smith, J.F., J. Electr. Mater. 23, 595 (1994).CrossRefGoogle Scholar
12.McCormack, M., Jin, S., Kammlott, G.W., and Chen, H.S., Appl. Phys. Lett., 63, 15 (1993).CrossRefGoogle Scholar
13.McCormack, M. and Jin, S., J. Electr. Mater. 23, 635 (1994).CrossRefGoogle Scholar
14.McCormack, M., Kammlott, G.W., Chen, H.S., and Jin, S., Appl. Phys. Lett. 65, 1233 (1994).CrossRefGoogle Scholar
15.Lin, K.L., Wen, L.H., and Liu, T.P., J. Electr. Mater. 27, 97 (1998).CrossRefGoogle Scholar
16.Lin, K.L. and Wen, L.H., J. Mater. Sci. Mater. Electr. 9, 5 (1998).CrossRefGoogle Scholar
17.Lin, K.L. and Liu, T.P., Oxid. Met. 50, 255 (1998).CrossRefGoogle Scholar
18.Lin, K.L. and Wang, Y.C., J. Electr. Mater. 27, 1205 (1998).CrossRefGoogle Scholar
19.Lin, K.L. and Hsu, H.M., J. Electr. Mater. 30, 1068 (2001).CrossRefGoogle Scholar
20.McCormack, M., Jin, S., and Chen, H.S., J. Electr. Mater. 23, 687 (1994).CrossRefGoogle Scholar
21.McCormack, M. and Jin, S., J. Electr. Mater. 23, 715 (1994).CrossRefGoogle Scholar
22.Chen, K.I. and Lin, K.L., J. Electr. Mater. 31, 861 (2002).CrossRefGoogle Scholar
23.Massalski, T.B., Binary Alloy Phase Diagrams (American Society for Metals, OH, 1986), Vol. 2.Google Scholar
24.Sebaoun, A., Vincent, D., and Treheus, D., Mater. Sci. Technol. 3, 241 (1987).CrossRefGoogle Scholar
25.Takemoto, T., Funaki, T., and Matsunawa, A., J. Jpn. Weld. Soc. 17, 251 (1999).CrossRefGoogle Scholar
26.Kubaschewski, O. and Catterall, J.A., Thermochemical Data of Alloys (Pergamon Press, London, 1956).Google Scholar
27.Hultgren, R., Selected Values of the Thermodynamic Properties of Binary Alloys, Part II (American Society for Metals, OH, 1973).Google Scholar
28.Hultgren, R., Selected Values of Thermodynamic Properties of Metals and Alloys (Wiley, New York, 1963).Google Scholar