Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T13:14:08.415Z Has data issue: false hasContentIssue false

Microstructures and Mechanical Behavior of Bulk Nanocrystalline γ–Ni–Fe Produced by a Mechanochemical Method

Published online by Cambridge University Press:  31 January 2011

X. Y. Qin*
Affiliation:
Laboratory of Internal Friction and defects in Solids, Institute of Solid State Physics Academia Sinica, 230031 Hefei, People's Republic of China
J. S. Lee
Affiliation:
Department of Metallurgy and Material Science, Hanyang University, 425–791 Ansan, Korea
C. S. Lee
Affiliation:
Department of Metallurgy and Material Science, Hanyang University, 425–791 Ansan, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Extract

The microstructures and mechanical behavior of bulk nanocrystalline γ–Ni–xFe (n-Ni–Fe) with x = ∼19–21 wt%, synthesized by a mechanochemical method plus hot-isostatic pressing, were investigated using microstructural analysis [x-ray diffraction, energy-dispersive spectroscopy, light emission spectrum, atomic force microscopy (AFM), and optical microscopy (OM)], and mechanical (indentation and compression) tests, respectively. The results indicated that the yield strength (σ0.2) of n-Ni–Fe (d ∼ 33 nm) is about 13 times greater than that of conventional counterpart. The change of yield strength with grain size was basically in agreement with Hall–Petch relation in the size range (33–100 nm) investigated. OM observations demonstrated the existence of two sets of macroscopic bandlike deformation traces mostly orienting at 45–55° to the compression axis, while AFM observations revealed that these bandlike traces consist of ultrafine lines. The cause for high strength and the possible deformation mechanisms were discussed based on the characteristics of microstructures and deformation morphology of n-Ni–Fe.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Suryanarayanan, C., Int. Met. Rev. 40, 41 (1995).CrossRefGoogle Scholar
3.Gertsman, V.Y., Birringer, R., Valiev, R.Z., and Gleiter, H., Scripta Metall. Mater. 30, 229 (1994).CrossRefGoogle Scholar
4.Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
5.Nieman, G.W., Weertman, J.R., and Siegel, R.W., Scripta Metall. Mater. 23, 2013 (1989).CrossRefGoogle Scholar
6.Jang, J.S.C. and Koch, C.C., Scripta Metall. Mater. 24, 1599 (1990).CrossRefGoogle Scholar
7.Ganapathi, S.K. and Rigney, D.A., Scripta Metall. Mater. 24, 1675 (1990).Google Scholar
8.Ho¨fler, H.J. and Averback, R.S., Scripta Metall. Mater. 24, 2401 (1990).CrossRefGoogle Scholar
9.Qin, X.Y., Wu, X.J., and Zhang, L.D., Nanostruct. Mater. 5, 101 (1995).CrossRefGoogle Scholar
10.Chokshi, A.H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. Mater. 23, 1679 (1989).CrossRefGoogle Scholar
11.Lu, K., Wei, W.D., and Wang, J.T., Scripta Metall. Mater. 24, 2319 (1990).CrossRefGoogle Scholar
12.Christman, T. and Jain, M., Scripta Metall. Mater. 25, 767 (1991).CrossRefGoogle Scholar
13.Fougere, G.E., Weertman, J.R., Siegel, R.W., and Kim, S., Scripta Metall. Mater. 26, 1879 (1992).CrossRefGoogle Scholar
14.Cheung, C., Djuanda, F., Erb, U., and Palumbo, G., Nanostruct. Mater. 5, 513 (1995).CrossRefGoogle Scholar
15.Weertman, J.R., Niedzielka, M., and Youngdahl, C., Mechanical Properties and Deformation Behavior of Materials Having Ultrafine Microstructures, edited by Nastasi, M., Parkin, D.M., and Gleiter, H. (Kluwer, Dordrecht, Germany, 1993), p. 241.Google Scholar
16.Sanders, P.G., Eastman, J.A., and Weertman, J.R., Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
17.Nieman, G.W., Weertman, J.R., and Siegel, R.W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
18.Nieman, G.W., Weertman, J.R., and Siegel, R.W., Scripta Metall. Mater. 24, 145 (1990).Google Scholar
19.Ferromagnetic Materials, edited by Wohlfarth, E.P. (North-Holland, Amsterdam, The Netherlands, 1980), Vol. 2, p. 123.Google Scholar
20.Kuhrt, C. and Schultz, L., J. Appl. Phys. 73, 1975 (1993).CrossRefGoogle Scholar
21.Ge, F.D., Chen, L.M., Ku, W.J., and Zhu, J., Nanostruct. Mater. 8, 703 (1997).CrossRefGoogle Scholar
22.Eroglu, S., Zhang, S.C., and Messing, G.L., J. Mater. Res. 11, 1231 (1996).CrossRefGoogle Scholar
23.Zhou, Y.H., Harmelin, M., and Bigot, J., Scripta Metall. 23, 1391 (1989).CrossRefGoogle Scholar
24.Qin, X.Y., Lee, J.S., Nam, J.G., and Kim, B.S., Nanostruct. Mater. 11, 383 (1999).Google Scholar
25.Helle, A.S., Easterling, K.E., and Ashby, M.F., Acta Metall. 33, 2163 (1985).CrossRefGoogle Scholar
26.Lee, J.S., Kim, T.H., Yu, J.H., and Chung, S.W., Nanostruct. Mater. 9, 153 (1997).CrossRefGoogle Scholar
27.Qin, X.Y., Lee, J.S., and Lee, C.S. (unpublished).Google Scholar
28.Tain, M. and Christman, T., Acta. Metall. Mater. 42, 1901 (1994).Google Scholar
29.Malow, T.R. and Koch, C.C., Metall. Mater. Trans. 29A, 2285 (1998).CrossRefGoogle Scholar
30.Ferromagnetic Materials, edited by Wohlfarth, E.P. (North-Holland, Amsterdam, The Netherlands, 1980), Vol. 2, p. 123.Google Scholar
31.Wiliam, D. and Callister, J.R., Materials Science and Engineering, 2nd ed. (John Wiley & Sons, New York, 1991), p. 112.Google Scholar
32.Gertsman, V.Y., Hoffmann, M., Gleiter, H., and Birringer, R., Acta Metall. Mater. 42, 3539 (1994).CrossRefGoogle Scholar
33.Friedel, J., Dislocations (Pergamon Press, London, United Kingdom, 1964), Chap. 8.Google Scholar
34.Honeycombe, R.W.K., The Plastic Deformation of Metals, 2nd ed. (Edward Arnold, London, United Kingdom, 1984), p. 227.Google Scholar
35.Friedel, J., Dislocations (Pergamon Press, London, United Kingdom, 1964), Appendix B.Google Scholar
36.Qin, X.Y., Zhu, X.G., Song, G., and Lee, J.S., J. Phys. Condens. Matter 14, 2605 (2002).CrossRefGoogle Scholar
37.Trusov, L.I., Khvostantseva, T.P., Solov’ev, V.A., and Mel’nikov, V.A., Nanostruct. Mater. 4, 803 (1994).CrossRefGoogle Scholar
38.Hwang, S., Nishimura, C., and McCormick, P.G., Scripta Metall. 44, 1507 (2001).Google Scholar