Article contents
Microstructure, texture, and enhanced mechanical properties of an extruded Mg–rare earth alloy after hot compression
Published online by Cambridge University Press: 10 December 2015
Abstract
An extruded Mg–8Gd–4Y–1Nd–0.5Zr alloy was preheated at 500 °C for 0.5 h and then subjected to hot compression to a true strain of 0.69 at temperature 450 °C and a strain rate of 0.2 s−1. It is observed that boundaries of small grains (∼3 μm) in the extruded alloy are decorated with irregular-shaped particles; small grains show a weak texture of three main components of $\left\langle {0001} \right\rangle //{\rm{TD}}$ , $\left\langle {11\overline 2 1} \right\rangle //{\rm{ND}}$ , and $\left\langle {10\overline 1 0} \right\rangle //{\rm{ED}}$ . Dynamic recrystallization is concurrent with dynamic precipitation of particles during hot compression, resulting in both a uniform grain structure and a redistribution of particles. The retained particles before compression keep the texture unchanged during compression, leading to the same texture type of $\left\langle {0001} \right\rangle //{\rm{TD}}$ of the compressed alloy as that of the preheated alloy. The compressed alloy exhibits a better aging hardening ability than the extruded alloy. After peak aging, the compressed alloy presents an ultimate tensile strength of 416 MPa, a yield tensile strength of 317 MPa, and an elongation of 2.7%.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2015
Footnotes
Contributing Editor: Jürgen Eckert
References
REFERENCES
- 4
- Cited by