Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T08:28:27.917Z Has data issue: false hasContentIssue false

Microstructure of hardened and softened zirconia after xenon implantation

Published online by Cambridge University Press:  31 January 2011

Elizabeth L. Fleischer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
M. Grant Norton
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Mark A. Zaleski
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
William Hertl
Affiliation:
Corning, Inc., Corning, New York 14831
C. Barry Carter
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
James W. Mayer
Affiliation:
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853
Get access

Abstract

Ion-channeling and transmission electron microscopy (TEM) techniques were used to examine the microstructure of single-crystal Y2O3 stabilized cubic zirconia (YSZ) after implantation with 240 keV Xe+ ions. The observed microstructure was related to Knoop indentation hardness measurements. These measurements showed an increase in hardness for low ion-doses, reaching some maximum value, then a decrease in hardness at higher doses. In the hardening regime, below 7.5 × 1015 Xe+/cm2, point defects and dislocation networks were observed by TEM. Ion-channeling showed a corresponding increase in damage as a function of ion-dose. For doses between 7.5 × 1015 and 3 × 1016 Xe+/cm2 the hardness falls, and the amount of damage, measured with ion-channeling, reaches a limiting value at less than complete damage. In this dose range the Xe concentration continues to increase beyond the dose where the amount of damage saturates. For high doses, greater than 3 × 1016 Xe+/cm2, where softening of the zirconia occurs, additional reflections appear in the electron diffraction pattern that are consistent with the lattice parameter of solid Xe. A diffuse ring is also visible; this is believed to be due to the presence of fluid Xe. Both ion-channeling and TEM show that a significant amount of monocrystalline zirconia remains even up to doses of 1 × 1017 Xe+/cm2. There is also evidence for the presence of recrystallized zirconia at the high doses. Since so much crystalline material remains, it seems that amorphization of the zirconia is not the dominant cause of the softening at high doses.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.McHargue, C. J., Defect and Diffusion Forum 57–58, 359 (1988).CrossRefGoogle Scholar
2.Kelly, R.and Naguib, H. M., in Atomic Collision Phenomena in Solids, edited by Palmer, D. W., Thompson, M. W., and Townsend, P. D. (Elsevier Publishing Company, Inc., New York, 1970).Google Scholar
3.Naguib, H. M. and Kelly, R., Radiat. Eff. 25, 1 (1975).CrossRefGoogle Scholar
4.Pauling, L., The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, 1960).Google Scholar
5.McHargue, C. J., Farlow, G. C., White, C. W., Appleton, B. R., Angelini, P., and Naramoto, H., Nucl. Instrum. Methods in Phys. Res. B10/11, 569 (1987).Google Scholar
6.Farlow, G. C., Sklad, P. S., White, C. W., and McHargue, C. J., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Mater. Res. Soc. Symp. Proc. 27, Pittsburgh, PA, 1984), p. 395.Google Scholar
7.Naramoto, H., White, C. W., Williams, J. M., McHargue, C. J., Holland, O. W., Abraham, M. M., and Appleton, B. R., J. Appl. Phys. 54, 683 (1983).CrossRefGoogle Scholar
8.Fleischer, E. L., Hertl, W., Alford, T. L., Børgesen, P., and Mayer, J. W., J. Mater. Res. 5, 385 (1990).CrossRefGoogle Scholar
9.Burnett, P. J. and Page, T. F.,J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
10.Carter, C. B., Summerfelt, S. R., Tietz, L. A., Norton, M. G., Susnitzky, and D. W., Inst. Phys. Conf. Ser. 98, 415 (1989).Google Scholar
11.Norton, M. G., Summerfelt, S. R., and Carter, C. B., Appl. Phys. Lett. 56, 2246 (1990).CrossRefGoogle Scholar
12. (ASTM C849–81).Google Scholar
13.Doolittle, L. R., Nucl. Instrum. Methods in Phys. Res. B9, 344 (1985).CrossRefGoogle Scholar
14.Feldman, L. C., Mayer, J. W., and Picraux, S. T., Materials Analysis by Ion Channeling (Academic Press, New York, 1982).Google Scholar
15.McHargue, C. J., Farlow, G. C., Begun, G. M., Williams, J. M., White, C. W., Appleton, B. R., Sklad, P. S., and Angelini, P., Nucl. Instrum. Methods in Phys. Res. B16, 212 (1986).CrossRefGoogle Scholar
16.Asaumi, K., Phys. Rev. B 29, 7026 (1984).CrossRefGoogle Scholar
17.Reichlin, R., Brister, K. E., McMahan, A. K., Ross, M., Martin, S., Vohra, Y. K., and Ruoff, A. L., Phys. Rev. Lett. 62, 669 (1989).CrossRefGoogle Scholar
18.Norton, M. G., Fleischer, E. L., Hertl, W., Carter, C. B., Mayer, J. W., and Johnson, E., Phys. Rev. B (in press, 1991).Google Scholar
19.Desoyer, J. C., Templier, C., Delafond, J., and Garem, H., Nucl. Instrum. Methods in Phys. Res. B119/20, 450 (1987).CrossRefGoogle Scholar
20.Templier, C., Garem, H., and Riviere, J. P., Philos. Mag. A 53, 667 (1986).CrossRefGoogle Scholar
21.Schoenlein, L. H., Hobbs, L. W., and Heuer, A. H., J. Appl. Cryst. 13, 375 (1980).CrossRefGoogle Scholar
22.Birtcher, R. C. and Jager, W., Ultramicroscopy 22, 267 (1987).CrossRefGoogle Scholar
23.Bull, S. J. and Page, T. F., J. Mater. Sci. 23, 4217 (1988).CrossRefGoogle Scholar
24.White, C. W., McHargue, C. J., Sklad, P. S., Boatner, L. A., and Farlow, G. C., Mater. Sci. Rep. 4, 41 (1989).CrossRefGoogle Scholar
25.McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., and Naramoto, H., Mater. Sci. Eng. 69, 123 (1985).CrossRefGoogle Scholar