Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T15:35:19.707Z Has data issue: false hasContentIssue false

Microstructure evolution in monocrystalline silicon in cyclic microindentations

Published online by Cambridge University Press:  06 January 2012

I. Zarudi
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006, Australia
L. C. Zhang
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006, Australia
M. V. Swain
Affiliation:
School of Aerospace, Mechanical and Mechatronic Engineering, Biomaterials Science Research Unit, The University of Sydney, Eveleigh, New South Wales 1430, Australia
Get access

Abstract

The study presents evidence of the microstructural evolution during cyclic indentation of monocrystalline silicon with a spherical indenter. Transmission electron microscopy examination of microindentation on cross-section view samples showed that the structure change in the transformation zone features a decomposition of the amorphous phase to R8/BC8 crystals. Outside the zone, cyclic loading gives rise to bending of pristine silicon, slip penetration, and radial cracking. The development of the load–displacement curves during consecutive indentations is justified in terms of the phase transformation events observed.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhang, L.C. and Zarudi, I., Int. J. Mech. Sci. 43, 1985 (2001).CrossRefGoogle Scholar
Bradby, J.E., Williams, J.S., Wong-Leung, M.V., Swain, M.V., and Munroe, P., Appl. Phys. Lett. 77, 3749 (2000).CrossRefGoogle Scholar
Cheong, W.C.D. and Zhang, L.C., Nanotechnology 11, 173 (2000).CrossRefGoogle Scholar
Clarke, D.R., Kroll, M.C., Kirchner, P.D., and Cook, R.F., Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle Scholar
Domnich, V., Gogotsi, Y.G., and Dub, S.N., Appl. Phys. Lett. 76, 2214 (2000).CrossRefGoogle Scholar
Gogotsi, Y.G., Domnich, V., Dub, S.N., Kailer, A., and Nickel, K.G., J. Mater. Res. 15, 871 (2000).CrossRefGoogle Scholar
Gridneva, I.V., Milman, Y.V., and Trefilov, V.I., Phys. Status Solidi 14, 177 (1972).CrossRefGoogle Scholar
Mann, A.B. and Pethica, J.B., Langmuir 12, 4583 (1996).CrossRefGoogle Scholar
Pharr, G.M., Oliver, W.C., and Clarke, D.R., Scripta Metall. 23, 1949 (1989).CrossRefGoogle Scholar
Pharr, G.M., Oliver, W.C., and Clarke, D.R., J. Electron. Mater. 19, 881 (1990).CrossRefGoogle Scholar
Zarudi, I. and Zhang, L.C., Tribol. Int. 32, 701 (1999).CrossRefGoogle Scholar
Zarudi, I. and Zhang, L.C., in Abrasive Technology, edited by Zhang, L.C. and Yasunaga, N. (World Scientific, Singapore, Brisbane, Australia, 1999), p. 437.CrossRefGoogle Scholar
Zhang, L.C. and Tanaka, H., JSME Int. J., Series A: Solid Mech. Mater. Eng. 14, 546 (1999).CrossRefGoogle Scholar
Zhang, L.C. and Zarudi, I., Key Eng. Mater. 177–180, 121 (2000).CrossRefGoogle Scholar
Bradby, J.E., Williams, J.S., Wong-Leung, M.V., Swain, M.V., and Maunroe, P., J. Mater. Res. 16, 1500 (2001).CrossRefGoogle Scholar
Mujica, A., Radescu, S., Munoz, A., and Needs, R.J., Phys. Status Solidi B 223, 379 (2001).3.0.CO;2-2>CrossRefGoogle Scholar
Domnich, V., Gogotsi, Y.G., and Trenary, M., in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (Mater. Res. Soc. Symp. 649, Warrendale, PA, 1991), p. Q89.Google Scholar
Zarudi, I., Zhang, L.C., and Swain, M.V., Appl. Phys. Lett. 82(7), 1027 (2003).CrossRefGoogle Scholar
Vodenitcharova, T. and Zhang, L.C., Int. J. Solids Struct. (in press).Google Scholar
Vodenitcharova, T., Zhang, L.C., and Yu, T.X., Key Eng. Mater. 233–236, 621 (2003).CrossRefGoogle Scholar
Cheong, W.C.D. and Zhang, L.C., J. Mater. Sci. Lett. 19, 439 (2000).CrossRefGoogle Scholar
Higgins, R.A., Engineering Metallurgy (Edward Arnold, London, U.K., 1993).Google Scholar