Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T15:23:15.319Z Has data issue: false hasContentIssue false

Microstructure, electrical properties, and thermal stability of Al ohmic contacts to n-GaN

Published online by Cambridge University Press:  31 January 2011

L. L. Smith
Affiliation:
Materials Research Center, North Carolina State University, Raleigh, North Carolina 27695–7919
R. F. Davis
Affiliation:
Materials Research Center, North Carolina State University, Raleigh, North Carolina 27695–7919
M. J. Kim
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287–1704
R. W. Carpenter
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287–1704
Y. Huang
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

As-deposited Al contacts were ohmic with a room-temperature contact resistivity of 8.6 × 10−5 Ω · cm2 on Ge-doped, highly n-type GaN (n = 5 × 1019 cm−3). They remained thermally stable to at least 500 °C, under flowing N2 at atmospheric pressure. The specific contact resistivities (ρc) calculated from TLM measurements on as-deposited Al layers were found to range from 8.6 × 10−5 Ω · cm2 at room temperature and 6.2 × 10−5 Ω · cm2 at 500 °C. Annealing treatments at 550 °C and 650 °C for 60 s each under flowing N2 resulted in an overall increase of contact resistivity. Cross-sectional, high-resolution electron microscopy (HREM) revealed that interfacial secondary phase formation occurred during high-temperature treatments, and coincided with the degradation of contact performance. Electron diffraction patterns from the particles revealed a cubic structure with lattice constant a = 0.784 nm, and faceting occurring on the {100} faces. Spectroscopic analysis via electron energy loss spectroscopy (EELS) revealed the presence of nitrogen and small amounts of oxygen in the Al layer, but no appreciable amounts of Ga. The results of microstructural and crystallographic characterization indicate that the new interfacial phase is a type of spinel Al nitride or Al oxynitride.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shen, T. C., Gao, G. B., and Morkoç, H., J. Vac. Sci. Technol. B 10 (5), 2113 (1992).CrossRefGoogle Scholar
2.Williams, R., Modern GaAs Processing Techniques (Artech House, Norwood, MA, 1990).Google Scholar
3.Rideout, V. L., Solid-State Electron. 18, 541 (1975).CrossRefGoogle Scholar
4.Marshall, E. D. and Murakami, M., in Contracts to Semiconductors, edited by Brillson, L. J. (Noyes, Park Ridge, NJ, 1993).Google Scholar
5.Stareev, G., Appl. Phys. Lett. 62 (22), 2801 (1993).CrossRefGoogle Scholar
6.Ragay, F. W., Leys, M. R., and Wolter, J. H., Appl. Phys. Lett. 63 (9), 1234 (1993).CrossRefGoogle Scholar
7.Henisch, H. K., Semiconductor Contacts (Clarendon Press, Oxford, 1984).Google Scholar
8.Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Oxford University Press, New York, 1988).Google Scholar
9.Kurtin, S., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 22, (26), 1433 (1969).CrossRefGoogle Scholar
10.Schlüter, M., Phys. Rev. B 17 (12), 5044 (1978).CrossRefGoogle Scholar
11.Smith, L. L. and Davis, R. F., in Properties of Group III Nitrides, EMIS DataReview Series No. 11, edited by Edgar, J.H. (INSPEC, Institution of Electrical Engineers, London, 1994).Google Scholar
12.Foresi, J. S., Ohmic Contacts and Schottky Barriers on GaN, M.S. Thesis, Boston University (1992).Google Scholar
13.Foresi, J. S. and Moustakas, T. D., Appl. Phys. Lett. 62 (22), 2859 (1993).CrossRefGoogle Scholar
14.Hacke, P., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Appl. Phys. Lett. 63 (19), 2676 (1993).CrossRefGoogle Scholar
15.Khan, M. R. H., Detchprohm, T., Hacke, P., Hiramatsu, K., and Sawaki, N., J. Phys. D 28, 1169 (1995).CrossRefGoogle Scholar
16.Binari, S. C., Dietrich, H. B., and Kelner, G., Electron. Lett. 30 (11), 909 (1994).CrossRefGoogle Scholar
17.Smith, L. L., King, S. W., Nemanich, R. J., and Davis, R. F., J. Electron. Mater. 25 (5), 805 (1996).CrossRefGoogle Scholar
18.Reeves, G. K. and Harrison, H. B., IEEE Electron Device Lett. EDL-3, 111 (1982).CrossRefGoogle Scholar
19.Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoç, H., Appl. Phys. Lett. 64 (8), 1008 (1994).Google Scholar
20.Nemanich, R. J., Benjamin, M. C., King, S. W., Bremser, M. D., Davis, R. F., Chen, B., Zhang, Z., and Bernholc, J., in Gallium Nitride and Related Materials, edited by Dupuis, R. D., Edmond, J. A., Ponce, F. A., and Nakamura, S. (Mater. Res. Soc. Proc. 395, Pittsburgh, PA, 1996, in press).Google Scholar
21.Huang, Y., Smith, L., Kim, M. J., Carpenter, R. W., and Davis, R. F., in Evolution of Thin-Film and Surface Structure and Morphology, edited by Demczyk, B. G., Williams, E. D., Garfunkel, E., Clemens, B. M., and Cuomo, J.E. (Mater. Res. Soc. Symp. Proc. 355, Pittsburgh, PA, 1995), pp. 433439.Google Scholar
22.Sitar, Z., Ph.D. Thesis, North Carolina State University, Raleigh, NC (1991).Google Scholar
23.Rafianello, W. and Cutler, I. B., J. Am. Ceram. Soc. 64, C128 (1976).Google Scholar
24.Kieffer, R., Wruss, W., and Willer, B., Rev. int. Htes Temp. et Réfract. 13 (2), 97 (1976).Google Scholar