Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T01:12:21.291Z Has data issue: false hasContentIssue false

Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

Published online by Cambridge University Press:  16 May 2011

Michiel G. Maas
Affiliation:
Inorganic Materials Science, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Eddy J.B. Rodijk
Affiliation:
Inorganic Materials Science, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
A. Wouter Maijenburg
Affiliation:
Inorganic Materials Science, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Dave H.A. Blank
Affiliation:
Inorganic Materials Science, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
Johan E. ten Elshof*
Affiliation:
Inorganic Materials Science, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the interior of the nanopore, leading to precipitation of a metal oxide or hydroxide phase. The crystalline and semiconducting ZnO phase formed directly above 60 °C at sufficiently high pH and led to the formation of dense nanowires with preferential (0001) orientation. The morphology of the wire could be influenced by the deposition temperature. Axially segmented gold–ZnO and silver–ZnO nanowires were made. In contrast, the iron hydroxide phase deposited inside the pore as a permeable gel that collapsed and transformed into hollow FeO(OH) tubes during drying. The as-formed nanotubes were amorphous and could be filled with nickel in a subsequent electrodeposition step, yielding core-shell nickel iron-oxohydroxide nanowires. The cathodic efficiency of nitrate reduction was low in both cases, suggesting that diffusional supply of metal ions may be the rate-determining step.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lieber, C.M. and Wang, Z.L.: Functional nanowires. MRS Bull. 32, 99 (2007).CrossRefGoogle Scholar
2.Heo, Y.W., Norton, D.P., Tien, L.C., Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J., and LaRoche, J.R.: ZnO nanowire growth and devices. Mater. Sci. Eng., R 47, 1 (2004).CrossRefGoogle Scholar
3.Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., and Yang, P.: DNA translocation in inorganic nanotubes. Nano Lett. 5, 1633 (2005).CrossRefGoogle ScholarPubMed
4.Patolsky, F., Zheng, G., and Lieber, C.M.: Nanowire-based biosensors. Anal. Chem. 78, 4260 (2006).CrossRefGoogle ScholarPubMed
5.Shen, G., Chen, P.-C., Ryu, K., and Zhou, C.: Devices and chemical sensing applications of metal oxide nanowires. J. Mater. Chem. 19, 828 (2009).CrossRefGoogle Scholar
6.Keating, C.D. and Natan, M.J.: Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451 (2003).CrossRefGoogle Scholar
7.Bauer, L.A., Reich, D.H., and Meyer, G.J.: Selective functionalization of two-component magnetic nanowires. Langmuir 19, 7043 (2003).CrossRefGoogle Scholar
8.Wang, J.: Barcoded metal nanowires. J. Mater. Chem. 18, 4017 (2008).CrossRefGoogle Scholar
9.Wang, Y., Hernandez, R.H., Bartlett, D.J. Jr., Bingham, J.M., Kline, T.R., Sen, A., and Mallouk, T.E.: Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22, 10451 (2006).CrossRefGoogle ScholarPubMed
10.Paxton, W.F., Sundarajam, S., Mallouk, T.E., and Sen, A.: Chemical locomotion. Angew. Chem. Int. Ed. 45, 5420 (2006).CrossRefGoogle ScholarPubMed
11.Wang, J.: Can man-made nanomachines compete with nature biomotors? ACS Nano 3, 4 (2009).CrossRefGoogle ScholarPubMed
12.Chen, J. and Cheng, F.: Combination of lightweight elements and nanostructured materials for batteries. Acc. Chem. Res. 42, 713 (2009).CrossRefGoogle ScholarPubMed
13.Wagner, R.S. and Ellis, W.C.: Vapor-liquid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).CrossRefGoogle Scholar
14.Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).CrossRefGoogle ScholarPubMed
15.Martin, C.R.: Nanomaterials: A membrane-based synthetic approach. Science 266, 1961 (1994).CrossRefGoogle ScholarPubMed
16.Li, Y., Meng, G.W., Zhang, L.D., and Phillipp, F.: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 76, 2011 (2000).CrossRefGoogle Scholar
17.Zheng, M.J., Zhang, L.D., Li, G.H., and Shen, W.Z.: Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique. Chem. Phys. Lett. 363, 123 (2002).CrossRefGoogle Scholar
18.Cui, J.B. and Gibson, U.J.: Electrodeposition and room temperature ferromagnetic anisotropy of Co- and Ni-doped ZnO nanowire arrays. Appl. Phys. Lett. 87, 133108 (2005).CrossRefGoogle Scholar
19.Leprince-Wang, Y., Yacoubi-Ouslim, A., and Wang, G.Y.: Structure study of electrodeposited ZnO nanowires. Microelectron. J. 36, 625 (2005).CrossRefGoogle Scholar
20.Lai, M. and Riley, D.J.: Templated electrosynthesis of zinc oxide nanorods. Chem. Mater. 18, 2233 (2006).CrossRefGoogle Scholar
21.Leprince-Wang, Y., Wang, G.Y., Zhang, X.Z., and Yu, D.P.: Study on the microstructure and growth mechanism of electrochemical deposited ZnO nanowires. J. Cryst. Growth 287, 89 (2006).CrossRefGoogle Scholar
22.Sima, M., Enculescu, I., Sima, M., Enache, M., Vasile, E., and Ansermet, J-P.: ZnO:Mn:Cu nanowires prepared by template method. Phys. Status Solidi B 244, 1522 (2007).CrossRefGoogle Scholar
23.Ramirez, D., Pauporte, T., Gomez, H., and Lincot, D.: Electrochemical growth of ZnO nanowires inside nanoporous alumina templates. A comparison with metallic Zn nanowires growth. Phys. Status Solidi A 205, 2371 (2008).CrossRefGoogle Scholar
24.Chou, S., Cheng, F., and Chen, J.: Electrochemical deposition of Ni(OH)2 and Fe-doped Ni(OH)2 tubes. Eur. J. Inorg. Chem. 4035 (2005).CrossRefGoogle Scholar
25.Miao, Z., Xu, D., Ouyang, J., Guo, G., Zhao, X., and Tang, Y.: Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires. Nano Lett. 2(7), 717 (2002).CrossRefGoogle Scholar
26.Bort, H., Jüttner, K., Lorenz, W.J., Staitkov, G., and Budevski, E.: Underpotential-overpotential transition phenomena in metal-deposition processes. Electrochim. Acta 28, 985 (1983).CrossRefGoogle Scholar
27.Cherevko, S., Fu, J., Kulyk, N., Cho, S.M., Haam, S., and Chung, C.-H.: Electrodeposition of palladium nanotube and nanowire arrays. J. Nanosci. Nanotechnol. 9, 3154 (2009).CrossRefGoogle ScholarPubMed
28.Tena-Zaera, R., Elias, J., Lévy-Clément, C., Mora-Seró, I., Luo, Y., and Bisquert, J.: Electrodeposition and impedance spectroscopy characterization of ZnO nanowire arrays. Phys. Status Solidi A 205, 2345 (2008).CrossRefGoogle Scholar
29.Konishi, Y., Motoyama, M., Matsushima, H., Fukunaka, Y., Ishii, R., and Ito, Y.: Electrodeposition of Cu nanowire arrays with a template. J. Electroanal. Chem. 599, 149 (2003).CrossRefGoogle Scholar
30.Motoyama, M., Fukunaka, Y., Sakka, T., and Ogata, Y.H.: Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim. Acta 53, 205 (2007).CrossRefGoogle Scholar
31.Maas, M.G., Rodijk, E.J.B., Maijenburg, W., ten Elshof, J.E., and Blank, D.H.A.: Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool’ in Multifunction at the Nanoscale through Nanowires, edited by Nielsch, K., Fontcuberta i Morral, A., Holt, J.K., and Thompson, C.V. (Mater. Res. Soc. Symp. Volume 1206E, Warrendale, PA, 2010), 1206-M01–08.Google Scholar
32.Gupta, M., Pinisetty, D., Flake, J.C., and Spivey, J.J.: Pulse electrodeposition of Cu–ZnO and Mn–Cu–ZnO nanowires. J. Electrochem. Soc. 157, D473 (2010).CrossRefGoogle Scholar
33.Gota, S., Moussy, J.-B., Henriot, M., Guittet, M.-J., and Gautier-Soyer, M.: Atomic-oxygen-assisted MBE growth of Fe3O4 (111) on α-Al2O3 (0001). Surf. Sci. 482485, 809 (2001).CrossRefGoogle Scholar