Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T03:09:51.487Z Has data issue: false hasContentIssue false

Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth

Published online by Cambridge University Press:  31 January 2011

Yunfei Chang
Affiliation:
Department of Materials Science and Engineering, and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802; and School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an, 710062 Shaanxi, People's Republic of China
Stephen F. Poterala
Affiliation:
Department of Materials Science and Engineering, and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
Zupei Yang
Affiliation:
School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an, 710062 Shaanxi, People's Republic of China
Gary L. Messing*
Affiliation:
Department of Materials Science and Engineering, and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper demonstrates the production of 〈00l〉-oriented CuO-doped (K0.476Na0.524)NbO3 (KNN) piezoelectric ceramics with a polymorphic phase transition (PPT) temperature greater than 180 °C by templated grain growth (TGG) using high aspect ratio NaNbO3 template particles. A novel (to the KNN system) two-step sintering and annealing process combined with CuO doping is demonstrated to improve density and maximize texture quality (F00l = 99% and rocking curve FWHM = 6.9°) in textured KNN ceramics. The best electromechanical properties (kp ≈ 0.58, k31 ≈ 0.33, d33 ≈ 146 pC/N, To-t ≈ 183 °C, Tc ≈ 415 °C, εr = 202, and tan δ = 0.016) are achieved in 1 mol% CuO-doped KNN with F00l = 99% and a relative density of 96.3%. The values of d33, kp, and k31 are 70–90% higher than randomly oriented ceramics and are obtained without a significant reduction in the PPT temperature, resulting in stable piezoelectric performance over a wide temperature range (−50 to 180 °C). These results show that high-quality textured KNN can be obtained by TGG and that a reactive matrix is unnecessary.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

References

REFERENCES

1.Jaffe, B., Cook, W.R., Jaffe, H.Piezoelectric Ceramics (Academic, New York 1971)135Google Scholar
2.Shrout, T.R., Zhang, S.J.Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007)CrossRefGoogle Scholar
3.Safari, A., Akdoğan, E.K.Piezoelectric and Acoustic Materials for Transducer Applications (Springer, New York 2008)81CrossRefGoogle Scholar
4.Egerton, L., Dillon, D.M.Piezoelectric and dielectric properties of ceramics in the system potassium–sodium niobate. J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
5.Saito, Y., Takao, H., Tani, T., Nonoyama, T., Takatori, K., Homma, T., Nagaya, T., Nakamura, M.Lead-free piezoceramics. Nature 432, 84 (2004)Google Scholar
6.Zhang, S.J., Xia, R., Shrout, T.R., Zang, G.Z., Wang, J.F.Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 100, 104108 (2006)Google Scholar
7.Chang, Y.F., Yang, Z.P., Hou, Y.T., Liu, Z.H., Wang, Z.L.Effect of Li content on the phase structure and electrical properties of lead-free (K0.46−x/2Na0.54−x/2Lix) (Nb0.76Ta0.20Sb0.04)O3 ceramics. Appl. Phys. Lett. 90, 232905 (2007)CrossRefGoogle Scholar
8.Dai, Y., Zhang, X., Zhou, G.Phase transitional behavior in (K0.5Na0.5)NbO3–LiTaO3 ceramics. Appl. Phys. Lett. 90, 262903 (2007)CrossRefGoogle Scholar
9.Akdoğan, E.K., Kerman, K., Abazari, M., Safari, A.Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)(Nb0.84 Ta0.10Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008)CrossRefGoogle Scholar
10.Wang, K., Li, J.F., Liu, N.Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics. Appl. Phys. Lett. 93, 092904 (2008)CrossRefGoogle Scholar
11.Chang, Y.F., Yang, Z.P., Ma, D.F., Liu, Z.H., Wang, Z.L.Phase transitional behavior, microstructure, and electrical properties in Ta-modified [(K0.458Na0.542)0.96Li0.04]NbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 104, 024109 (2008)CrossRefGoogle Scholar
12.Zuo, R., Rodel, J., Chen, R., Li, L.Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89, 2010 (2006)CrossRefGoogle Scholar
13.Lin, D.M., Kwok, K.W., Chan, H.L.W.Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 90, 232903 (2007)Google Scholar
14.Park, H., Choi, J., Choi, M., Cho, K., Nahm, S., Lee, H., Kang, H.Effect of CuO on the sintering temperature and piezoelectric properties of (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 91, 2374 (2008)Google Scholar
15.Matsubara, M., Yamaguchi, T., Sakamoto, W., Kikuta, K., Yogo, T., Hirano, S.Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88, 1190 (2005)Google Scholar
16.Zhang, S.J., Lim, J.B., Lee, H.J., Shrout, T.R.Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1523 (2009)CrossRefGoogle ScholarPubMed
17.Brosnan, K.H., Poterala, S.F., Meyer, R.J., Misture, S., Messing, G.L.Templated grain growth of 〈001〉 textured PMN–28PT using SrTiO3 templates. J. Am. Ceram. Soc. 92, s133 (2009)Google Scholar
18.Amorín, H., Santacruz, I., Holc, J., Thi, M.P., Kosec, M., Moreno, R., Algueró, M.Tape-casting performance of ethanol slurries for the processing of textured PMN–PT ceramics from nanocrystalline powder. J. Am. Ceram. Soc. 92, 996 (2009)CrossRefGoogle Scholar
19.Richter, T., Denneler, S., Schuh, C., Suvaci, E., Moos, R.Textured PMN–PT and PMN–PZT. J. Am. Ceram. Soc. 91, 929 (2008)CrossRefGoogle Scholar
20.Shoji, T., Fuse, K., Kimura, T.Mechanism of texture development in Bi0.5(Na, K)0.5TiO3 prepared by the templated grain growth process. J. Am. Ceram. Soc. 92, S140 (2009)CrossRefGoogle Scholar
21.Fuse, K., Kimura, T.Effect of particle sizes of starting materials on microstructure development in textured Bi0.5(Na0.5K0.5)0.5 TiO3. J. Am. Ceram. Soc. 89, 1957 (2006)CrossRefGoogle Scholar
22.Duran, C., Trolier-Mckinstry, S., Messing, G.L.Dielectric and piezoelectric properties of textured Sr0.53Ba0.47Nb2O6 ceramics prepared by templated grain growth. J. Mater. Res. 18, 228 (2003)Google Scholar
23.Messing, G.L., Trolier-McKinstry, S., Sabolsky, E.M., Duran, C., Kwon, S., Brahmaroutu, B., Park, P., Yilmaz, H., Rehrig, P.W., Eitel, K.B., Suvaci, E., Seabaugh, M., Oh, K.S.Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 45 (2004)CrossRefGoogle Scholar
24.Takao, H., Saito, Y., Aoki, Y., Horibuchi, K.Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a sintering aid of CuO. J. Am. Ceram. Soc. 89, 1951 (2006)CrossRefGoogle Scholar
25.Chang, Y.F., Poterala, S., Yang, Z.P., Trolier-McKinstry, S., Messing, G.L.〈001〉 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett. 95, 232905 (2009)Google Scholar
26.Chang, Y.F., Yang, Z.P., Chao, X.L., Liu, Z.H., Wang, Z.L.Synthesis and morphology of anisotropic NaNbO3 seed crystals. Mater. Chem. Phys. 111, 195 (2008)CrossRefGoogle Scholar
27.Lotgering, F.K.Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures. J. Inorg. Nucl. Chem. 9, 113 (1959)Google Scholar
28.IEEE Standard on Piezoelectricity (American National Standards Institute, New York 1987)Google Scholar
29.Zhang, S.J., Alberta, E.F., Eitel, R.E., Randall, C.A., Shrout, T.R.Elastic, piezoelectric, and dielectric characterization of modified BiScO3-PbTiO3 ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2131 (2005)CrossRefGoogle ScholarPubMed
30.Sirotinkin, V.P., Drozdova, N.M.Interaction in binary system of CuO–Nb2O5. Russ. J. Inorg. Chem. 37, 1334 (1992)Google Scholar