Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:54:23.503Z Has data issue: false hasContentIssue false

Microstructure, chemical aspects, and mechanical properties of TiB2/Si3N4 and TiN/Si3N4 composites

Published online by Cambridge University Press:  03 March 2011

Jow-Lay Huang
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
Shih-Yih Chen
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
Ming-Tung Lee
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan 701, Republic of China
Get access

Abstract

The chemical stability of TiB2 and TiN in a silicon nitride matrix under various conditions of temperature and gaseous environments was investigated. The addition of TiB2 and TiN on the microstructure and mechanical properties was also studied. No trace of interactions between TiN and Si3N4 was noticed. The addition of TiB2 to Si3N4 enhanced conversion of the α to β phase of the Si3N4 matrix. Observations of BN and TiN indicated a possible reaction between TiB2 and Si3N4. The fracture toughness of Si3N4 was substantially enhanced with the addition of TiB2 or TiN, while the strength was decreased. Crack deflection was the major toughening mechanism in a Si3N4/TiB2 composite. Most of the microcracks passed through TiN particles and cleavaged along preferred orientations with large deflection angles.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shew, B-Y. and Huang, J-L., J. Mater. Sci. Eng. A159, 127133 (1992).CrossRefGoogle Scholar
2Non-oxide Technical and Engineering Ceramics, edited by Hampshire, S. (Elsevier Applied Science, London, 1986), pp. 8396.Google Scholar
3Tani, E., Umebayashi, S., and Kobayashi, K., Am. Ceram. Soc. Bull. 65 (9), 13111315 (1986).Google Scholar
4Evans, A. G., J. Am. Ceram. Soc. 73 (2), 187206 (1990).Google Scholar
5Rice, R. W., Ceram. Eng. Sci. Proc. 11 (7-8), 667694 (1990).CrossRefGoogle Scholar
6Kodma, H., Sakamoto, H., and Miyoshi, T., J. Am. Ceram. Soc. 72 (4), 551568 (1989).Google Scholar
7Bellosi, A. and Deportu, G., Mater. Sci. Eng. A109, 357362 (1989).Google Scholar
8Mah, Tai-II and Mendiratta, M. G., Ceram. Bull. 60 (11), 12291231 (1981).Google Scholar
9Huang, J. L. and Lin, C. J., J. Mater. Sci. 28, 10741080 (1993).CrossRefGoogle Scholar
10Huang, J. L., Kuo, F. J., and Chen, S. Y., J. Mater. Sci. Eng. A174, 157164 (1994).CrossRefGoogle Scholar
11McMurtry, C. H., Am. Ceram. Soc. Bull. 66 (2), 325329 (1987).Google Scholar
12Liu, J. and Ownby, P. D., J. Am. Ceram. Soc. 74 (1), 241243 (1991).CrossRefGoogle Scholar
13Bellosi, A. and Fiegna, A., in Adv. Structural Inorganic Comp., edited by Vincenzini, P. (1991), pp. 225234.Google Scholar
14Gazzara, C. P. and Messier, D. R., Am. Ceram. Soc. Bull. 56 (9), 777780 (1977).Google Scholar
15Forgeng, W. D. and Decker, B. F., Trans. Metall. Soc. AIME 212, 343348 (1958).Google Scholar
16Grun, R., Acta Crystallogr. B 35, 800804 (1979).Google Scholar
17Messier, D. R., Riley, F. L., and Brook, R. J., J. Mater. Sci. B(6), 11991205 (1978).CrossRefGoogle Scholar
18Messier, D. R. and Rieley, R. L., Nitrogen Ceramics, edited by Riley, F. L. (Nordhoff, Leyden, The Netherlands, 1977), p. 141.Google Scholar
19Greskovich, C. and Prochazka, S., J. Am. Ceram. Soc. 60 (9–10), 471472 (1977).CrossRefGoogle Scholar
20Sarin, V. K., Mater. Sci. Eng. A105/106, 151159 (1988).CrossRefGoogle Scholar
21Tampieri, A. and Bellosi, A., in Adv. Structural Inorganic Comp., edited by Vincenzini, P. (1991), pp. 409420.Google Scholar
22Tani, T. and Wada, S., J. Mater. Sci. 25 (1A), 157160 (1990).CrossRefGoogle Scholar
23Huang, J. L., Chiu, H. L., and Lee, M. T., J. Am. Ceram. Soc. 77, (3), 705710 (1994).CrossRefGoogle Scholar
24Janney, M. A., Am. Ceram. Soc. Bull. 66 (2), 324325 (1987).Google Scholar
25Arthurs, T. C., Mostaghaci, H., and Murphy, J. G., Ceram. Eng. Sci. Proc. 11 (9–11), 17781789 (1990).CrossRefGoogle Scholar
26Huang, J. L. and Chen, S. Y., unpublished research (1994).Google Scholar
27Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 58 (7–8), 371372 (1976).CrossRefGoogle Scholar
28Evans, A. G., J. Mater. Sci. 9 (7), 11451152 (1974).CrossRefGoogle Scholar
29Faber, K. T. and Evans, A. G., Acta Metall. 31 (4) 565 (1983).Google Scholar
30Huang, J. L. and Virkar, A. V., Fracture Mechanics of Ceramics 6, 121135 (1985).Google Scholar
31Taya, M., Hayashi, S., Kobayashi, A. S., and Yoon, H. S., J. Am. Ceram. Soc. 73 (5), 13821391 (1990).Google Scholar
32Das, G., Mazdiasni, J. S., and Lipsitt, H. A., J. Am. Ceram. Soc. 65, 104110 (1982).Google Scholar
33Huang, J. L. and Jih, J. M., unpublished research (1994).Google Scholar