Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T20:22:01.596Z Has data issue: false hasContentIssue false

Microstructure and thermophysical properties of CeO2-doped SmTaO4 ceramics for thermal barrier coatings

Published online by Cambridge University Press:  27 January 2020

Ying Zhou*
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China Yunnan Provincial Academy of Science and Technology, Kunming 650093, People's Republic of China
Guoyou Gan
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
Zhenhua Ge
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
Peng Song
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
Jing Feng
Affiliation:
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

SmTaO4 ceramics have excellent high-temperature phase stabilities and mechanical properties and show great potential for use as next-generation thermal barrier coating (TBC) materials. CeO2–SmTaO4 ceramics are prepared via high-temperature solid–state reaction. It retains a single monoclinic phase structure. Ce4+ was reduced to Ce3+ by high-temperature deoxidation, and the Ce3+ ions substitute for an equal number of Sm3+ ions. The CeO2–SmTaO4 ceramics had lower thermal conductivities [1.09–2.75 W/(m K)] than yttria-stabilized zirconia (YSZ) [2.1–2.7 W/(m K)] at 100–800 °C, which decreased dramatically with increasing temperature. SmTaO4 doped with 2% CeO2 had lower thermal conductivity [1.09 W/(m K), 800 °C] than SmTaO4 [1.42 W/(m K), 800 °C] and 2% ZrO2-doped SmTaO4 ceramics [1.22 W/(m K), 800 °C]. The low thermal conductivity is attributed to Ce3+ substitution for an equal number of Sm3+ ions, and because Ce3+ ions are the strongest phonon scattering centers, they can decrease the phonon mean free path effectively. The thermal expansion coefficient of 8% CeO2–SmTaO4 ceramics is approximately 10.3 × 10−6 K−1 at 1200 °C, which is slightly higher than that of both YSZ (10.0 × 10−6 K−1) and SmTaO4 (9.58 × 10−6 K−1). The outstanding thermophysical properties indicate that CeO2–SmTaO4 ceramics are potential TBC materials.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Racek, O. and Berndt, C.C.: Mechanical property variations within thermal barrier coatings. Surf. Coat. Technol. 202, 362 (2007).CrossRefGoogle Scholar
Li, D-C., Zhao, H-Y., Zhong, X-H., and Tao, S-Y.: Research progresses of atmospheric plasma sprayed splat. J. Inorg. Mater. 6, 571 (2017).Google Scholar
Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., and Pettit, F.S.: Mechanisms controlling the durability of thermal barrier coatings. Prog. Mater. Sci. 46, 505 (2001).CrossRefGoogle Scholar
Cao, X-Q., Vassen, R., and Stoever, D.: Ceramic materials for thermal barrier coatings. J. Eur. Ceram. Soc. 24, 1 (2004).CrossRefGoogle Scholar
Clarke, D.R. and Levi, C.G.: Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res. 33, 383 (2003).CrossRefGoogle Scholar
Schulz, U., Leyens, C., Fritscher, K., Saruhan-Brings, M., Lavigne, B., Dorvaux, O., Poulain, J.M., Mevrel, M., and Caliez, R.: Some recent trends in research and technology of advanced thermal barrier coatings. Aerosp. Sci. Technol. 7, 73 (2003).CrossRefGoogle Scholar
Clarke, D.R.: Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Technol. 163, 67 (2003).CrossRefGoogle Scholar
Vassen, R., Cao, X-Q., Basu, D., and Tietz, F.: Zirconates as new materials for thermal barrier coatings. J. Am. Ceram. Soc. 83, 2023 (2004).CrossRefGoogle Scholar
Cao, X-Q., Vassen, R., Tietz, F., and Fischer, W.: Lanthanum-cerium oxide as a thermal barrier-coating material for high-temperature applications. Adv. Mater. 15, 1438 (2003).CrossRefGoogle Scholar
Yang, B., Li, L-Y., Fan, M-G., Li, B., Xu, S-M., Wang, J-L., and Lin, X-P.: Synthesis and thermophysical properties of (La1−xMgx)2Ce2O7−x. J. Inorg. Mater. 12, 1301 (2014).Google Scholar
Tian, Z-L., Zheng, L-Y., Wang, J-M., Wan, P., Li, J-L., and Wang, J-Y.: Theoretical and experimental determination of the major thermo-mechanical properties of RE2SiO5 (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for environmental and thermal barrier coating applications. J. Eur. Ceram. Soc. 36, 189 (2016).CrossRefGoogle Scholar
Friedrich, C., Gadow, R., and Schirmer, T.: Lanthanum hex-aluminate a new material for atmospheric plasma spraying of advanced thermal barrier coatings. J. Therm. Spray Technol. 10, 592 (2001).CrossRefGoogle Scholar
Friedrich, C.J., Gadow, R., and Lischka, M.H.: Lanthanum hex-aluminate thermal barrier coatings. Ceram. Eng. Sci. Proc. 22, 375 (2001).CrossRefGoogle Scholar
Gadow, R. and Lischka, M.: Lanthanum hex-aluminate-novel thermal barrier coatings for gas turbine application-materials and process development. Surf. Coat. Technol. 151, 392 (2002).CrossRefGoogle Scholar
Nitin, P.P. and Klemens, P.G.: Low thermal conductivity in garnets. J. Am. Ceram. Soc. 80, 1018 (1977).Google Scholar
Pitek, F.M. and Levi, C.G.: Opportunities for TBCs in the ZrO2–YO1.5–TaO2.5 system. Surf. Coat. Technol. 12, 6044 (2007).CrossRefGoogle Scholar
Li, Z-Z., Zhao, S-T., Ritchie, R.O., and Meyers, M.A.: Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. 102, 296 (2019).CrossRefGoogle Scholar
Feng, J., Xiao, B., Zhou, R., and Pan, W.: Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, and Gd) from first-principles calculations. Acta Mater. 61, 7364 (2013).CrossRefGoogle Scholar
Feng, J., Xiao, B., Zhou, R., and Pan, W.: Thermal expansion and conductivity of RE2Sn2O7 (RE = La, Nd, Sm, Gd, Er, and Yb) pyrochlores. Scr. Mater. 69, 401 (2013).CrossRefGoogle Scholar
Yokogawa, Y., Yoshimura, M., and Sōmiya, S.: Order-disorder in R3TaO7 (R = rare earth) phases. Solid State Ionics. 28, 1250 (1988).CrossRefGoogle Scholar
Zhang, H-S., Yu, H-P., Chen, X-G., Zhao, Y-D., Jiao, H-B., Li, G., and Li, Z-J.: Preparation and thermophysical properties of Sm2YbTaO7 and Sm2YTaO7. Ceram. Int. 13, 14695 (2016).Google Scholar
Yu, J-H., Zhao, H-Y., and Zhou, X-M.: Microstructure and properties of air plasma sprayed Sm2Zr2O7 coatings. J. Inorg. Mater. 7, 696 (2011).CrossRefGoogle Scholar
Chen, L., Wu, P., Song, P., and Feng, J.: Potential thermal barrier coating materials: RE3NbO7 (RE = La, Nd, Sm, Eu, Gd, Dy) ceramics. J. Am. Ceram. Soc. 101, 4503 (2018).CrossRefGoogle Scholar
Chen, L., Jiang, Y., Chong, X-Y., and Feng, J.: Synthesis and thermophysical properties of RETa3O9 (RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J. Am. Ceram. Soc. 101, 1266 (2018).CrossRefGoogle Scholar
Chen, L., Wu, P., and Feng, J.: Optimization thermophysical properties of TiO2 alloying Sm3TaO7 ceramics as promising thermal barrier coatings. Int. J. Appl. Ceram. Technol. 16, 230 (2019).CrossRefGoogle Scholar
Chen, L., Song, P., and Feng, J.: Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scr. Mater. 152, 117 (2018).CrossRefGoogle Scholar
Shian, S., Sarin, P., Gurak, M., Baram, M., Kriven, W.M., and Clarke, D.R.: The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Mater. 69, 196 (2014).CrossRefGoogle Scholar
Feng, J., Shian, S., Xiao, B., and Clarke, D.R.: First-principles calculations of the high-temperature phase transformation in yttrium tantalite. Phys. Rev. B 90, 094102 (2014).CrossRefGoogle Scholar
Wang, J., Zhou, Y., Chong, X-Y., Zhou, R., and Feng, J.: Microstructure and thermal properties of a promising thermal barrier coatings: YTaO4. Ceram. Int. 42, 13876 (2016).CrossRefGoogle Scholar
Wang, J., Chong, X-Y., and Feng, J.: Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scr. Mater. 126, 24 (2017).CrossRefGoogle Scholar
Luo, Y-Y., Chen, L., Wu, P., Song, P., and Feng, J.: Synthesis and thermo physics properties of ferroelastic SmNb1−xTaxO4 ceramics. Ceram. Int. 44, 13999 (2018).CrossRefGoogle Scholar
Zhou, Y., Gan, G-Y., Ge, Z-H., Yi, J-H., and Feng, J.: Phase structures and thermophysical properties of ZrO2-doped SmTaO4 ceramics. Mod. Phys. Lett. B 33, 11 (2019).CrossRefGoogle Scholar
Leitner, J., Chuchvalec, P., and Sedmidubsky, D.: Estimation of solid mixed oxides. Themochim. Acta. 395, 245 (2002).CrossRefGoogle Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. A. 32, 751 (1976).CrossRefGoogle Scholar
Berman, R.: Thermal Conduction in Solids (Clarendon Press, Oxford, 1976); p. 113.Google Scholar
Kittel, C.: Introduction to Solid State Physics (Wiley, New York, NY, 1996); p. 54.Google Scholar
Klemens, P.G.: The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc., London, Sect. A. 68, 1113 (1955).CrossRefGoogle Scholar
Zhao, M., Pan, W., Wan, C-L., Qu, Z-X., Li, Z., and Yang, J.: Defect engineering in development of low thermal conductivity materials: A review. J. Eur. Ceram. Soc. 37, 1 (2016).CrossRefGoogle Scholar
Parrot, J.E. and Stuckes, E.: Thermal Conductivity of Solid (Pion, London U.K., 1975); p. 23.Google Scholar
Chevalier, J., Gremillard, L., Virkar, A.V., and Clarke, D.R.: The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. J. Am. Ceram. Soc. 92, 1901 (2009).CrossRefGoogle Scholar
Zhao, M., Ren, X-R., Yan, J., and Pan, W.: Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings. Ceram. Int. 42, 501508 (2016).CrossRefGoogle Scholar
Kurosaki, K., Kosuga, A., Muta, H., Uno, M., and Yamanaka, S.: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).CrossRefGoogle Scholar
Sanditov, D.S. and Belomestnykh, V.N.: Relation between the parameters of the elasticity theory and averaged bulk modulus of solids. Tech. Phys. 56, 1619 (2011).CrossRefGoogle Scholar