Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:39:57.592Z Has data issue: false hasContentIssue false

Microstructure and properties of Cu-rich 123. Part I: Copper at the grain boundaries

Published online by Cambridge University Press:  31 January 2011

J.P. Zhang
Affiliation:
Science and Technology Center for Superconductivity, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
D.J. Li
Affiliation:
Science and Technology Center for Superconductivity, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
L.D. Marks
Affiliation:
Science and Technology Center for Superconductivity, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208
C.H. Lin
Affiliation:
Science and Technology Center for Superconductivity, Materials Research Laboratory, University of Illinois at Champaign–Urbana, 104 South Goodwin, Urbana, Illinois 61801
J.A. Eades
Affiliation:
Science and Technology Center for Superconductivity, Materials Research Laboratory, University of Illinois at Champaign–Urbana, 104 South Goodwin, Urbana, Illinois 61801
A. Sodonis
Affiliation:
Science and Technology Center for Superconductivity, The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637
W. Wolbach
Affiliation:
Science and Technology Center for Superconductivity, The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637
J.M. Chabala
Affiliation:
Science and Technology Center for Superconductivity, The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637
R. Levi-Setti
Affiliation:
Science and Technology Center for Superconductivity, The Enrico Fermi Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637
Get access

Abstract

A range of copper-rich bulk YBa2Cu3+xO7+y superconductors have been prepared by mixing excess copper oxide in the initial material and characterized for their magnetic properties and microstructure. The microstructure of the materials exhibits a high density of planar defects at the grain boundaries and a grain boundary amorphous phase. There is a small increase in the magnetic Jc at 4.5 K but a decrease compared to a conventional material at 77 K, and there is no correlation of the magnetic Jc with the twin boundary density. The change in Jc can be understood if the grain boundary pinning is strong at 4.5 K but weak at 77 K. Data obtained using a very wide range of different microstructure characterization techniques clearly indicate the dangers of relying on only one technique to obtain a full picture of the material.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Watanabe, K., Appl. Phys. Lett. 54, 575 (1989).CrossRefGoogle Scholar
2.Xi, X.X., Linker, G., Meyer, O., Nold, E., Obst, B., Ratzel, F., Smithey, R., Strehlan, B., Weschenfelder, F., and Geerk, J., Z. Phys. B 74, 13 (1989).CrossRefGoogle Scholar
3.Koren, G., Gupta, A., Giess, E. A., Segmüller, A., and Laibowitz, R. B., Appl. Phys. Lett. 54, 1054 (1989).CrossRefGoogle Scholar
4.Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
5.Salama, K., Selvamanickam, V., Gao, L., and Sun, K., Appl. Phys. Lett. 54, 2074 (1988).Google Scholar
6.Meng, R.L., Kiinalidis, C., Sun, Y.Y., Gao, L., Tao, Y.K., Hor, P.H., and Chu, C.W., Nature 345, 326 (1990).CrossRefGoogle Scholar
7.Selvamanickam, V. and Salama, K., “Superconductivity Applications and Developments,” Winter Annual Meeting of ASME MD 11, 35 (1988).Google Scholar
8.Kes, P. H., Pruymboom, A., van den Berg, J., and Mydosh, J.A., Cryogenics 29, 1189 (1989).CrossRefGoogle Scholar
9.Welp, U., Kwok, W.K., Crabtree, G.W., Vandervoort, K.G., and Liu, J. Z., Appl. Phys. Lett. 57, 84 (1990).CrossRefGoogle Scholar
10.Matsui, Y., Takayama-Muromachi, E., and Kato, K., Jpn. J. Appl. Phys. 26, L1183 (1987).CrossRefGoogle Scholar
11.Roas, B., Hensel, B., Saemann-Ischenko, G., and Schultz, L., Appl. Phys. Lett. 54, 1051 (1989).CrossRefGoogle Scholar
12.van Dover, R. B., Gyorgy, E. M., Schneemeyer, L. F., Mitchell, J. W., Rao, K. V., Puzniak, R., and Waszczak, J. V., Nature 342,55 (1989).Google Scholar
13.Kohiki, Shigemi, Hatta, Shin-ichiro, Setsune, Kentaro, Wasa, Kiyotaka, Higashi, Yasuhiro, Fukushima, Sei, and Gohshi, Yohichi, Appl. Phys. Lett. 56, 298 (1990).CrossRefGoogle Scholar
14.Shi, D., Boley, M.S., Welp, V., Chen, J.G., and Liao, Y., Phys. Rev. B 40, 5255 (1989).Google Scholar
15.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).Google Scholar
16.Watanabe, K., Matsushita, T., Kobayashi, N., Kawabe, H., Aoyagi, E., Hiraga, K., Yamane, H., Kurosawa, H., Hirai, T., and Muto, Y., Appl. Phys. Lett. 56, 1490 (1990).CrossRefGoogle Scholar
17.Jin, S., Tiefel, T.H., Nakahara, S., Graebner, J.E., O'Bryan, H.M., Fastnacht, R. A., and Kammlott, G. W., Appl. Phys. Lett. 56, 1287 (1990).Google Scholar
18.Weir, S.T. and Nellis, W.J., Appl. Phys. Lett. 56, 2042 (1990).Google Scholar
19.Li, D. J., Boldt, C., Zhang, J. P., Dravid, V., Marks, L. D., Sodonis, A., Wolbach, W., Chabala, J. M., and Levi-Setti, R., in preparation.Google Scholar
20.Li, D. J., Shibahara, H., Zhang, J. P., and Marks, L. D., Physica C 156, 201 (1988).CrossRefGoogle Scholar
21.Levi-Setti, R., Wang, Y.L., and Crow, G., Appl. Surf. Sci. 26, 249 (1986).CrossRefGoogle Scholar
22.Levi-Setti, R., Fox, T. R., and Lam, K., Nucl. Instrum. Methods 205, 299 (1983).Google Scholar
23.Marks, L. D., Li, D. J., Shibahara, H., and Zhang, J. P., J. Electron Microsc. Technique 8, 297 (1988).Google Scholar
24.Zandbergen, H. W., Gronsky, R., Wang, K., and Thomas, G., Nature 331, 596 (1988).CrossRefGoogle Scholar
25.Shibahara, H., Marks, L. D., Hwu, S-J., and Poeppelmeier, K. R., J. Solid State Chem. 79, 194 (1989).CrossRefGoogle Scholar
26.Zhang, J. P., Li, D. J., and Marks, L. D., in High-Temperature Superconductors, edited by Brodsky, M. B., Dynes, R. C., Kitazawa, K., and Tuller, H.L. (Mater. Res. Soc. Symp. Proc. 99, Pittsburgh, PA, 1988), p. 965.Google Scholar
27.Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).Google Scholar
28.Bean, C. P., Rev. Mod. Phys. 36, 31 (1964).CrossRefGoogle Scholar
29.Anderson, P. W. and Kim, Y. B., Rev. Mod. Phys. 36, 39 (1964).CrossRefGoogle Scholar