Article contents
Microstructure and Phase Stability Studies on Heusler Phase Ni2AlHf and G-phase Ni16Hf6Si7 in Directionally Solidified NiAl–Cr(Mo) Eutectic Alloyed with Hf
Published online by Cambridge University Press: 31 January 2011
Abstract
Small additions of Hf to directionally solidified NiAl–Cr(Mo) eutectic resulted in precipitation of a high density of Heusler phase Ni2AlHf along with fine G-phase Ni16Hf6Si7. The Heusler phase was mainly located on the grain boundary region. The fine G-phase formed in the presence of Si, which was a contamination resulting from contact with ceramic shell molds during directional solidification of the alloy. These fine G-phases were cuboidal in shape and coherent with the NiAl matrix. After hot isostatic pressing and aging treatment, the fine G-phases completely disappeared. The density of the Heusler phase was partially reduced, and the Heusler particles precipitated preferentially on the NiAl/Cr(Mo) interfaces and grain boundaries of the NiAl matrix. Some Heusler particles precipitated locally within the NiAl matrix, and small amounts of them precipitated within the Cr(Mo) phase. The structures of the NiAl/Ni2AlHf and NiAl/Ni16Hf6Si7 interfaces were investigated by high-resolution electron microscopy. The habit plane of the fine G-phase was {001}NiAl. This result was in good agreement with calculation based on the linear elastic theory. The misfit dislocation network on the NiAl/Ni2AlHf (110) interface was calculated from the O-lattice model and compared with the observation, which showed good agreement.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
REFERENCES
- 13
- Cited by