Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:06:36.416Z Has data issue: false hasContentIssue false

Microstructure and growth mechanisms of YBa2Cu3Ox films prepared by rf thermal plasma evaporation

Published online by Cambridge University Press:  03 March 2011

J. Tsujino
Affiliation:
Superconducting Research Laboratory, ISTEC, 10–13 Shinononme, Kotoku, Tokyo 135, Japan
N. Tatsumi
Affiliation:
Superconducting Research Laboratory, ISTEC, 10–13 Shinononme, Kotoku, Tokyo 135, Japan
Y. Shiohara
Affiliation:
Superconducting Research Laboratory, ISTEC, 10–13 Shinononme, Kotoku, Tokyo 135, Japan
Get access

Abstract

We prepared YBa2Cu3Ox films on (100) MgO and (100) SrTiO3 substrates by rf thermal plasma evaporation, and investigated microstructure and growth mechanisms of these films by observation of the surfaces using an AFM technique. As a result, 2D nucleation and further coalescence between vicinal grains were observed in the initial stage of growth. In the films prepared for a deposition time of 3 min, the different complex growth modes, including spiral growth, “birth and spread” growth, and 2D growth, were observed, which might be due to high growth rate over 55 nm/min of this process.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Terashima, K., Eguchi, K., Yoshida, T., and Akashi, K., Appl. Phys. Lett. 52, 1274 (1988).CrossRefGoogle Scholar
2Terashima, K., Komaki, H., and Yoshida, T., IEEE Trans. Plasma Sci. 18, 980 (1990).Google Scholar
3Hirokawa, Y., Takamura, Y., Komaki, Ff., Terashima, K., and Yoshida, T., J. Mater. Synthesis and Processing 1, 53 (1993).Google Scholar
4Yuhya, S., Kikuchi, K., Shiohara, Y., Terashima, K., and Yoshida, T., J. Mater. Res. 7, 2673 (1992).CrossRefGoogle Scholar
5Kikuchi, K., Yuhya, S., and Shiohara, Y., J. Mater. Sci. Lett. 12, 1392 (1993); Berry, A.D., Gaskill, D. K., Holm, R. T., Cukauskas, E. J., and Henry, R. L., Appl. Phys. Lett. 52, 1743 (1988).CrossRefGoogle Scholar
6Tatsumi, N., Tsujino, J., Yuhya, S., Kikuchi, K., and Shiohara, Y., Proc. 5th Int. Symp. on Superconductivity (1992) (Springer-Verlag, Tokyo, 1992), p. 665.Google Scholar
7Tsujino, J., Tatsumi, N., and Shiohara, Y., J. Mater. Res. 9, 1089 (1994).CrossRefGoogle Scholar
8Hawley, M., Raistrick, I. D., Beery, J. G., and Houlton, R. J., Science 251, 1587 (1991).CrossRefGoogle Scholar
9Raistrick, I. D., Hawley, M., Beery, J. G., Garzon, F. H., and Houlton, R. J., Appl. Phys. Lett. 59, 3177 (1991).CrossRefGoogle Scholar
10Moreland, J., Rice, P., Russek, S. E., Jeanneret, B., Roshko, A., Ono, R. H., and Rudman, D. A., Appl. Phys. Lett. 59, 3039 (1991).Google Scholar
11Harmer, M. A., Fincher, C. R., and Parkinson, B. A., J. Appl. Phys. 70, 2760 (1991).CrossRefGoogle Scholar
12Muenchausen, R. E., Hawley, M., Foltyn, S. R., Wu, X. D., Dye, R. C., Garzon, F. H., Skofronick, G. L., and Carim, A. H., Physica C 199, 445 (1992).CrossRefGoogle Scholar
13Yuhya, S., Tsujino, J., Tatsumi, N., and Shiohara, Y., J. Mater. Res. 8, 709 (1993).CrossRefGoogle Scholar
14Tsuchiya, R., Gong, J. P., Fujito, K., Kawasaki, M., Yoshimoto, M., and Koinuma, H., Extended Abstract, The 54th Autumn Meeting (The Japan Society of Applied Physics, 1993), p. 115.Google Scholar
15Burton, W. K., Cabrera, N., and Frank, F. C., Philos. Trans. R. Soc. London, Ser. A 243, 299 (1951).Google Scholar
16Scheel, H. J., in Proc. 6th Int. Symp. on Superconductivity (1993) (Springer-Verlag, Tokyo, 1993), p. 29.Google Scholar
17Schlom, D. G., Anselmetti, D., Bednorz, J. G., Gerber, Ch., and Mannhart, J., J. Cryst. Growth 137, 259 (1994).CrossRefGoogle Scholar
18Sakai, H., Kubota, N., Shiohara, Y., and Tanaka, S., in Proc. 6th Int. Symp. on Superconductivity (1993) (Springer-Verlag, Tokyo, 1993), p. 925.Google Scholar