Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T15:07:42.411Z Has data issue: false hasContentIssue false

Microstructure and dielectric properties of (Ba,Sr)TiO3 thin film produced by the polymeric precursor method

Published online by Cambridge University Press:  31 January 2011

F. M. Pontes
Affiliation:
Department of Chemistry, Federal University of São Carlos-UFSCar, 13560-905 São Carlos, SP, Brazil
E. B. Araujo
Affiliation:
Department of Physics, Federal University of São Carlos-UFSCar, 13560-905 São Carlos, SP, Brazil
E. R. Leite
Affiliation:
Department of Chemistry, Federal University of São Carlos-UFSCar, 13560-905 São Carlos, SP, Brazil
J. A. Eiras
Affiliation:
Department of Physics, Federal University of São Carlos-UFSCar, 13560-905 São Carlos, SP, Brazil
E. Longo
Affiliation:
Department of Chemistry, Federal University of São Carlos-UFSCar, 13560-905 São Carlos, SP, Brazil
J. A. Varela
Affiliation:
Institute of Chemistry, Paulista State University, 14801-970 Araraquara, SP, Brazil
M. A. Pereira-da-Silva
Affiliation:
São Carlos Institute of Physics, São Paulo State University, 13560-970 São Carlos, SP, Brazil
Get access

Abstract

BaxSr1−xTiO3 (x 4 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 °C. The multilayer BST thin films had a granular structure with a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tokoda, M., Hamaji, Y., Tomono, K., and Payne, D.A., Jpn. J. Appl. Phys. 32, 4158 (1993).Google Scholar
2.Dey, S.K., Lee, J.J., and Alluri, P., Jpn. J. Appl. Phys. 34, 3142 (1993).CrossRefGoogle Scholar
3.Lee, S.J., Cho, C.R., Kang, M.S., and Jang, M.S., Appl. Phys. Lett. 68, 764 (1996).CrossRefGoogle Scholar
4.Foschini, C.R., Joshi, P.C., Varela, J.A., and Desu, S.B., J. Mater. Res. 14, 1860 (1999).CrossRefGoogle Scholar
5.Thomas, R., Dube, D.C., Kamalasanan, M.N., Chandra, S., and Bhalla, A.S., J. Appl. Phys. 82, 4484 (1997).CrossRefGoogle Scholar
6.Dey, S.K. and Lee, J.J., IEEE Trans. Electron. Devices ED- 39, 1607 (1992).CrossRefGoogle Scholar
7.Mihara, T., Watanabe, H., and Paz, C.A.de Araujo, Jpn. J. Appl. Phys. 33, 5281 (1994).CrossRefGoogle Scholar
8.Kamalasanan, M.N., Kumar, N.D., and Chandra, S., J. Appl. Phys. 74, 5674 (1993).Google Scholar
9.Hofman, W., Hoffmann, S., and Waser, R., Thin Solid Films 305, 66 (1997).CrossRefGoogle Scholar
10.Yanase, N., Sano, K., Abe, K. and Kawakubo, T., Jpn. J. Appl. Phys. 37, L151 (1998).CrossRefGoogle Scholar
11.Krupanidhi, S.B. and Peng, C.J., Thin Solid Films 305, 144 (1997).CrossRefGoogle Scholar
12.Saha, S. and Krupanidhi, S.B., Mater. Sci. Eng. B 57, 135 (1999).CrossRefGoogle Scholar
13.Arita, K., Fujii, E., Shimida, Y., Shimida, Y., Uemoto, Y., Inoue, A., Masuda, A., Otsuki, T., and Suzuoka, N., Jpn. J. Appl. Phys. 33, 5397 (1994).CrossRefGoogle Scholar
14.Parker, L.H. and Tasch, A.H., IEEE Circuit Device Mag. January, 17 (1990).CrossRefGoogle Scholar
15.Sakama, T., Yamamichi, S., Matsubara, S., Yamaguchi, H., and Miyasaka, Y., Appl. Phys. Lett. 57, 243 (1990).Google Scholar
16.Hiratani, M., Tarutani, Y., Fukazawa, T., Okamoto, M., and Ta-kagi, K., Thin Solid Films 227, 200 (1993).CrossRefGoogle Scholar
17.Tarashima, T., Yamamoto, K., Hirata, K., and Bando, Y., Appl. Phys. Lett. 58, 1527 (1990).Google Scholar
18.Yamamichi, S., Sakama, T., Takemura, T., and Miyasaka, Y., Jpn. J. Appl. Phys. 30, 2193 (1991).CrossRefGoogle Scholar
19.Takeshima, Y., Shiratsuyu, K., Takagi, N., and Sakabe, Y., Jpn. J. Appl. Phys. 36, 5870 (1997).CrossRefGoogle Scholar
20.Jang, S.I., Choi, B.C., and Jang, H.M., J. Mater. Res. 12, 1327 (1997).CrossRefGoogle Scholar
21.Shimada, Y., Inoque, A., Nasu, T., Nagano, Y., Matsuda, A., Arita, K., Uemoto, Y., Fujii, E., and Otsuki, T., Jpn. J. Appl. Phys. 35, 4919 (1996).CrossRefGoogle Scholar
22.Joshi, P.C. and Krupanid, S.B., J. Appl. Phys. 73, 7627 (1993).CrossRefGoogle Scholar
23.Horikama, T., Mikami, N., Makita, T., Tanimura, J., Kataoka, M., Sato, K., and Nunoshita, M., Jpn. J. Appl. Phys. 32, 4126 (1993).CrossRefGoogle Scholar
24.Sigov, A.S. and Vorotilov, K.A., J. Sol-Gel Sci. Technol. 2, 256 (1994).CrossRefGoogle Scholar
25.Baumert, B.A., Chang, L.H., Matsuda, A.T., Tracy, C.J., Lave, N.G., Gregory, R.B., and Fejes, P.L., J. Mater. Res. 13, 197 (1998).CrossRefGoogle Scholar
26.Abe, K. and Komatsu, S., J. Appl. Phys. 77, 6461 (1995).CrossRefGoogle Scholar
27.Izuka, M., Abe, K., Koike, M., and Fukushima, N., Solid State Ionics 108, 99 (1998).Google Scholar
28.Lee, W.J., Park, I.K., Jang, G.E., and Kim, H.G., Jpn. J. Appl. Phys. 34, 196 (1995).CrossRefGoogle Scholar
29.Kim, Y.I. and Lee, C.W., Jpn. J. Appl. Phys. 35, 6153 (1996).Google Scholar
30.Liu, M. and Wang, D., J. Mater. Res. 10, 3210 (1995).CrossRefGoogle Scholar
31.Agarwal, V. and Liu, M., J. Mater. Sci. 32, 619 (1997).CrossRefGoogle Scholar
32.Bouquet, V., Zanetti, S.M., Foschini, C.R., Leite, E.R., Longo, E., and Varela, J.A., in Innovative Processing and Synthesis of Ceramic, Glasses, and Composites, Ceramic Transactions Vol. 85, edited by Bansal, N.P., Logan, K.V., and Singh, J.P. (Am. Ceram. Soc., Westerville, OH, 1998), p. 333.Google Scholar
33.Zanetti, S.M., Leite, E.R., Longo, E., and Varela, J.A., J. Mater. Res. 13, 2932 (1998).CrossRefGoogle Scholar
34.Zanetti, S.M., Leite, E.R., Longo, E., and Varela, J.A., Mater. Lett. 31, 173 (1997).CrossRefGoogle Scholar
35.Ahn, J.H., Park, J.H., and Kim, H.G., J. Korean Phys. Soc. 32, 1513 (1998).Google Scholar
36.Wu, D., Li, A., Liu, Z., Ling, H., Ge, C.Z., Liu, X., Wang, H., Wang, M., , P., and Ming, N., Thin Solid Films 336, 172 (1998).CrossRefGoogle Scholar
37.Hayashi, T. and Tanaka, T., Jpn. J. Appl. Phys. 34, 5100 (1995).CrossRefGoogle Scholar
38.Tsai, M., Sun, S., and Tseng, T., J. Am. Ceram. Soc. 82, 351 (1999).CrossRefGoogle Scholar
39.Yoon, S., Lee, J., and Safari, A., J. Appl. Phys. 76, 2999 (1994).CrossRefGoogle Scholar
40.Tahan, D.M., Safari, A., and Klein, L.C., J. Am. Ceram. Soc. 79, 1593 (1996).CrossRefGoogle Scholar
41.Basceri, C., Streiffer, S.K., and Kingon, A.I., J. Appl. Phys. 82, 2497 (1997).CrossRefGoogle Scholar
42.Sutton, P.M., in Progress in Dielectric, edited by Birks, J.B. and Schulman, J.H. (John Wiley & Sons, New York, 1960), p. 113.Google Scholar
43.Tomozawa, M., in Treatise on Materials Science and Technology, edited Tomozawa, M. and Doremus, R.H. (Academic, New York, 1977), p. 283.Google Scholar
44.Mafei, N. and Krupanidhi, S.B., J. Appl. Phys. 72, 3617 (1992).CrossRefGoogle Scholar
45.Joshi, P.C. and Krupanidhi, S.B., J. Appl. Phys. 72, 5817 (1992).Google Scholar
46.Sayer, M., Mansingh, A., Arora, A.K., and Lo, A., Integrated Ferro-electrics 1, 129 (1992).CrossRefGoogle Scholar
47.Maruno, S., Kuroiwa, T., Mikani, N., Sato, K., Ohumara, S., Kaida, M., Yasue, T., and Koshikawa, T., Appl. Phys. Lett. 73, 954 (1998).CrossRefGoogle Scholar