Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T10:41:39.309Z Has data issue: false hasContentIssue false

Microstructure and ambient properties of a Sialon composite prepared by hot pressing and reactive sintering of β–Si3N4 coated with Al2O3

Published online by Cambridge University Press:  31 January 2011

G. Ghosh
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 N. Campus Drive, Evanston, Illinois 60208–3108
S. Vaynman
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 N. Campus Drive, Evanston, Illinois 60208–3108
M. E. Fine
Affiliation:
Department of Materials Science and Engineering, Northwestern University, 2225 N. Campus Drive, Evanston, Illinois 60208–3108
S. M. Hsu
Affiliation:
NIST, Building 223, Room A257, Gaithersburg, Maryland 20899
Get access

Abstract

A composite microstructure, consisting of β-Sialon, O-Sialon, and X-Sialon phases was produced by coating β–Si3N4 particles with amorphous alumina followed by hot pressing and reactive sintering at 1923 K. The particle coating procedure was selected over conventional powder blending in order to promote heterogeneous nucleation of β-Sialon grains on β–Si3N4 particles uniformly. The microstructure, chemistry of the phases, and interphase interfaces of this ceramic were characterized by transmission electron microscopy (TEM) and high-resolution analytical electron microscopy (AEM). Both electron energy-loss spectroscopy (EELS) and energy-dispersive spectroscopy (EDS) x-ray microanalysis in AEM revealed that b-Sialon grains had varying aluminum and oxygen contents. High-resolution electron microscopy (HREM) examination of several interphase interfaces and triple junctions suggests that the amount of glassy phase in the produced ceramic is substantially lower compared to those reported in the literature. This is of importance of high temperature properties. The fracture toughness and wear properties were evaluated at room temperature. Available data indicate that the fracture toughness and wear of β-Sialon composite can be significantly improved by the powder coating technique compared to the conventional powder blending technique.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dressler, W., Hoffmann, M. J., and Petzow, G., Key Engng. Mater. 89–91, 165 (1994).Google Scholar
2.Saigalik, P., Dusza, J., and Hoffmann, M. J., Ceram. Acta 6, 35 (1994).Google Scholar
3.Dusza, J., Lube, T., Danzer, R., and Weisskopf, K-L., Key Engng. Mater. 89–91, 535 (1994).Google Scholar
4.Kim, Y.W., Mitomo, M., and Hirosaki, N., J. Mater. Sci. 30, 4043 (1995).CrossRefGoogle Scholar
5.Kim, Y.W., Mitomo, M., and Hirosaki, N., J. Mater. Sci. 30, 5178 (1995).CrossRefGoogle Scholar
6.Saigalik, P., Dusza, J., and Hoffmann, M. J., J. Am. Ceram. Soc. 78, 2619 (1995).CrossRefGoogle Scholar
7.Okamoto, Y., Hirosaki, N., Akimune, Y., and Mitomo, M., J. Ceram. Soc. Jpn. 103, 720 (1995).CrossRefGoogle Scholar
8.Sheu, T-S., J. Am. Ceram. Soc. 77, 2345 (1994).CrossRefGoogle Scholar
9.Hirosaki, N., Okamoto, Y., Akimune, Y., Yamada, T., and Mitomo, M., J. Ceram. Soc. Jpn. 103, 977 (1995).CrossRefGoogle Scholar
10.Ekström, T. and Nygren, M., J. Am. Ceram. Soc. 75, 259 (1992).CrossRefGoogle Scholar
11.Tsuge, A., Nishima, K., and Komatsu, M., J. Am. Ceram. Soc. 58, 323 (1975).CrossRefGoogle Scholar
12.Goto, Y. and Thomas, G., Acta Metall. Mater. 43, 923 (1995).CrossRefGoogle Scholar
13.Cinibulk, M.K., Thomas, G., and Johnson, S.M., J. Am. Ceram. Soc. 75, 2037 (1992).CrossRefGoogle Scholar
14.Raj, R. and Lange, F.F., Acta Metall. 29, 1993 (1981).CrossRefGoogle Scholar
15.Falk, L.K. L. and Dunlop, G.L., J. Mater. Sci. 22, 4369 (1987).CrossRefGoogle Scholar
16.Kleebe, H-J., Hoffmann, M. J., and Rühle, M., Z. Metallkde. 83, 610 (1992).Google Scholar
17.Kishi, K., Umebayashi, S., Pompe, R., and Persson, M., J. Ceram. Soc. Jpn., Int. Edn. 96, 687 (1988).Google Scholar
18.Kulig, M., Oroschin, W., and Greil, P., J. Eur. Ceram. Soc. 10, 209 (1989).CrossRefGoogle Scholar
19.Wang, C-M. and Riley, F. L., J. Eur. Ceram. Soc. 10, 83 (1992).CrossRefGoogle Scholar
20.Wang, C-M. and Riley, F.L., Key Engng. Mater. 89–91, 135 (1994).Google Scholar
21.Schmidt, H., Nabert, G., Ziegler, G., and Goretzki, H., J. Eur. Ceram. Soc. 15, 667 (1995).CrossRefGoogle Scholar
22.Wang, C-M. and Riley, F. L., in Novel Synthesis and Processing of Ceramics, British Ceramic Proceedings No. 53, edited by Sale, F. R. (The Institute of Materials, London, 1994), p. 235.Google Scholar
23.Davies, I. J., Djuricic, B., Pickering, S., and De Hosson, J. Th. M., J. Surf. Analysis 3, 394 (1997).Google Scholar
24.Nakamura, H. and Kato, A., Ceram. Int. 18, 201 (1992).CrossRefGoogle Scholar
25.Anstis, G.R., Chantikul, P., Lawn, B. R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
26.Ekström, T., Käll, P. O., Nygren, M., and Olsson, P. O., J. Mater. Sci. 24, 1853 (1989).CrossRefGoogle Scholar
27.Vleugels, J. and Van Der Biest, O., J. Eur. Ceram. Soc. 13, 529 (1994).CrossRefGoogle Scholar
28.Thompson, D.P. and Korgul, P., in Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff, The Hague, The Netherlands, 1983), p. 375.CrossRefGoogle Scholar
29.Naik, I. K., Gauckler, L.J., and Tien, T.Y., J. Am. Ceram. Soc. 61, 332 (1978).CrossRefGoogle Scholar
30.Hwang, S-L. and Chen, I-W., J. Am. Ceram. Soc. 77, 1719 (1994).CrossRefGoogle Scholar
31.Lange, F.F., J. Am. Ceram. Soc. 62, 428 (1979).CrossRefGoogle Scholar
32.Terwilliger, G.R. and Lange, F. F., J. Am. Ceram. Soc. 52, 25 (1974).CrossRefGoogle Scholar
33.Lee, D-D., Kang, S-J. L., Petzow, G., and Yoon, D. N., J. Am. Ceram. Soc. 73, 767 (1990).CrossRefGoogle Scholar
34.Mitomo, M., Tsutsumi, M., Tanaka, H., Uenosono, S., and Saito, F., J. Am. Ceram. Soc. 73, 2441 (1990).CrossRefGoogle Scholar
35.Mitomo, M. and Uenosono, S., J. Mater. Sci. 26, 3940 (1991).CrossRefGoogle Scholar
36.Emoto, H. and Mitomo, M., J. Eur. Ceram. Soc. 17, 797 (1997).CrossRefGoogle Scholar
37.Lewis, M.H., Reed, C., and Butler, N. D., Mater. Sci. Eng. 71, 87 (1985).CrossRefGoogle Scholar
38.Ekström, T., Olsson, P. O., and Holmström, M., J. Eur. Ceram. Soc. 12, 165 (1993).CrossRefGoogle Scholar
39.Oyama, Y. and Kamigaito, O., Jpn. J. Appl. Phys. 10, 1637 (1971).CrossRefGoogle Scholar
40.Jack, K.H. and Wilson, W. J., Nature (London), Phys. Sci. 238, 28 (1972).CrossRefGoogle Scholar
41.Oyama, Y. and Kamigaito, O., Yogyo-Kyokai-Shi 80, 327 (1972).CrossRefGoogle Scholar
42.Drew, P. and Lewis, M.H., J. Mater. Sci. 9, 1833 (1974).CrossRefGoogle Scholar
43.Anya, C.C. and Hendry, A., J. Eur. Ceram. Soc. 10, 65 (1992).CrossRefGoogle Scholar
44.Clarke, D.R., J. Am. Ceram. Soc. 62, 236 (1979).CrossRefGoogle Scholar
45.Zangvil, A., Gauckler, L. J., and Rühle, M., J. Mater. Sci. Lett. 15, 788 (1980).Google Scholar
46.Clarke, D.R. and Thomas, G., J. Am. Ceram. Soc. 61, 114 (1978).CrossRefGoogle Scholar
47.Lou, L.K. V., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 61, 392 (1978).CrossRefGoogle Scholar
48.Rühle, M., Springer, C., Gauckler, L. J., and Wilkens, M., in Proc. 5th Int. Conf. on High Voltage Microscopy, edited by Mura, T. and Hashimoto, H. (Jpn. Soc. for Electron Microscopy, Japan, 1977).Google Scholar
49.Krivanek, O.L., Shaw, T. M., and Thomas, G., J. Appl. Phys. 50, 4223 (1979).CrossRefGoogle Scholar
50.Clarke, D.R., Ultramicroscopy 4, 33 (1979).CrossRefGoogle Scholar
51.Ness, J. N., Stobbs, W.M., and Page, T. F., Philos. Mag. A 54, 679 (1986).CrossRefGoogle Scholar
52.Cinibulk, M.K., Kleebe, H-J., and Rühle, M., J. Am. Ceram. Soc. 76, 426 (1993).CrossRefGoogle Scholar
53.Clarke, D.R. and Thomas, G., J. Am. Ceram. Soc. 60, 491 (1977).CrossRefGoogle Scholar
54.Kleebe, H-J., Cinibulk, M. K., Cannon, R.M., and Rühle, M., J. Am. Ceram. Soc. 76, 1969 (1993).CrossRefGoogle Scholar
55.Mitomo, M., Hasegawa, Y., Bando, Y., Watanabe, A., and Suzuki, H., Yogyo-Kyokai-Shi 88, 298 (1980).CrossRefGoogle Scholar
56.Lewis, M.H., Powell, B. D., Drew, P., Lumby, R. J., North, B., and Taylor, A.J., J. Mater. Sci. 12, 61 (1977).CrossRefGoogle Scholar
57.Lewis, M.H., Key Engng. Mater. 89–91, 333 (1994).Google Scholar
58.Richerson, D.W., in Modern Ceramic Engineering (Marcel Dekker Inc., New York and Basel, 1982), p. 74.Google Scholar
59.Faber, K.T. and Evans, A. G., Acta Metall. 31, 565 (1983).CrossRefGoogle Scholar
60.Wills, R.R., Stewart, R.W., and Wimmer, J.M., Am. Ceram. Soc. Bull. 56, 194 (1977).Google Scholar
61.Gangopadhyay, A.K., Fine, M.E., and Chang, H.S., in New Materials Approaches to Tribology: Theory and Applications, edited by Pope, L. E., Fehrenbacher, L., and Winer, W. O. (Mater. Res. Soc. Symp. Proc. 140, Pittsburgh, PA, 1989), p. 293.Google Scholar
62.Mukhopadhyay, A.K., Chakraborty, D., Swain, M.V., and Mai, Y-W., J. Eur. Ceram. Soc. 17, 91 (1997).CrossRefGoogle Scholar
63.Cho, S.J., Hockey, B.J., Lawn, B.R., and Bennison, S. J., J. Am. Ceram. Soc. 72, 1249 (1989).CrossRefGoogle Scholar
64.Cho, S.J., Moon, H., Hockey, B. J., and Hsu, S. M., Acta Metall. 40, 185 (1992).CrossRefGoogle Scholar
65.Liu, H.Y. and Fine, M. E., J. Am. Ceram. Soc. 76, 2393 (1993).CrossRefGoogle Scholar