Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T13:18:06.917Z Has data issue: false hasContentIssue false

A microstructural study of mechanical alloying of Fe and Sn powders

Published online by Cambridge University Press:  31 January 2011

Gérard Le Caër
Affiliation:
Laboratoire de Science et Génie des Matériaux Métalliques associé au CNRS U.R.A. 159, Ecole des Mines, F-54042 Nancy Cedex, France
Paolo Matteazzi
Affiliation:
Istituto di Chimica, Università degli Studi di Udine, Via Cotonificio 108,1-33100 Udine, Italy
Brent Fultz
Affiliation:
Department of Materials Science, California Institute of Technology, Mail Stop 138-78, Pasadena, California 91125
Get access

Abstract

Elemental Fe and Sn powders in the ratio of 1:2 were ball-milled for various times at room temperature, and phase transformations in the powders were studied by 57Fe and 119Sn Mössbauer spectrometries, transmission electron microscopy, and x-ray diffractometry. Although Fe-Sn alloys are not obvious candidates for solid-state amorphization reactions, an amorphous phase formed after only a few hours of ball milling. Nanocrystalline intermetallic FeSn2 particles nucleated and grew within the amorphous phase, and FeSn2 became the major phase after 10–20 h of ball milling. These small particles were superparamagnetic, and were above the blocking temperature at room temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.White, R. L., Ph.D. Dissertation, Stanford University, 1979.Google Scholar
2.Koch, C. C., Kavin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
3.Weeber, A. W. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar
4.Schultz, L., J. Less-Common Met. 145, 233 (1988).CrossRefGoogle Scholar
5.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., Metall. Trans. A 21A, 2333 (1990).CrossRefGoogle Scholar
6.Fultz, B., Caër, G. Le, and Matteazzi, P., J. Mater. Res. 4, 14501455 (1989).CrossRefGoogle Scholar
7.Price, D. C., J. Phys. F: Metal Phys. 4, 639 (1974).CrossRefGoogle Scholar
8.Dubiel, S. M. and Znamirowski, V., Hyperfine Interactions 9, 477 (1981).CrossRefGoogle Scholar
9.Trumpy, G., Both, E., Djega-Mariadassou, C., and Lecocq, P., Phys. Rev. B 2, 3477 (1970).CrossRefGoogle Scholar
10.Shimotomai, M. and Doyama, M., Hyperfine Interactions 9, 329 (1981).CrossRefGoogle Scholar
11.Shimotomai, M., Hasiguti, R. R., and Umeyama, S., Phys. Rev. B 18, 2097 (1978).CrossRefGoogle Scholar
12.Caër, G. Le, Malaman, B., and Roques, B., J. Phys. F: Metal Phys. 8, 323 (1978).CrossRefGoogle Scholar
13.Caër, G. Le, Malaman, B., Haggström, L., and Ericsson, T., J. Phys. F: Metal Phys. 9, 1905 (1979).CrossRefGoogle Scholar
14.Haggström, L., Ericsson, T., Wäppling, R., and Chandra, K., Physica Scripta 11, 47 (1975).CrossRefGoogle Scholar
15.Caër, G. Le, Malaman, B., Venturini, G., Fruchart, D., and Roques, B., J. Phys. F: Metal Phys. 15, 1813 (1985).CrossRefGoogle Scholar
16.Venturini, G., Malaman, B., Caër, G. Le, and Fruchart, D., Phys. Rev. B 35, 7038 (1987).CrossRefGoogle Scholar
17.Rodmacq, B., Piecuch, M., Janot, C., Marchal, G., and Mangin, P., Phys. Rev. B 21, 1911 (1980).CrossRefGoogle Scholar
18.Johnson, W. L., Progr. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
19.Samwer, K., Phys. Rep. 161, 1 (1988).CrossRefGoogle Scholar
20.Guilmin, P., Guyot, P., and Marchal, G., Phys. Lett. 109 A, 174 (1985).CrossRefGoogle Scholar
21.Tiainen, T. J. and Schwarz, R. B., J. Less-Common Met. 140, 99 (1988).CrossRefGoogle Scholar
22.Lubyova, Z., Fellner, P., and Matiasovsky, K., Z. Metallk. 66, 179 (1975).Google Scholar
23.Sarafianos, N., Mater. Sci. Eng. 80, 87 (1986).CrossRefGoogle Scholar
24.Boer, F. R. De, Boom, R., Matthews, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (North Holland, Amsterdam, 1988), Vol. 1.Google Scholar
25.Desré, P. J. and Yavari, A. R., Phys. Rev. Lett. 64, 1533 (1990).CrossRefGoogle Scholar
26.Yavari, A. R. and Desré, P. J., Phys. Rev. Lett. 65, 2571 (1990).CrossRefGoogle Scholar
27.Koch, C. C., Annu. Rev. Mater. Sci. 19, 121 (1989).CrossRefGoogle Scholar
28.Nasu, S., Shingu, P. H., Ishihara, K. N., and Fujita, F. E., Hyperfine Interactions 55, 1043 (1990).CrossRefGoogle Scholar
29.Varnek, V. A., Strugova, L. I., and Avvakumov, E. G., Sov. Phys.-Solid State 16, 1186 (1974).Google Scholar
30.Caër, G. Le and Dubois, J. M., J. Phys. E 12, 1083 (1979).CrossRefGoogle Scholar
31.Geny, J. F., Marchal, G., Mangin, Ph., Janot, Chr., and Piecuch, M., Phys. Rev. B 25, 7449 (1982).CrossRefGoogle Scholar
32.Stevens, J. G. and Gettys, W. L., Isomer Shift Reference Scales, Mössbauer Effect Data Center, University of North Carolina (1981).Google Scholar
33.Hohenemser, C., Phys. Rev. A 139, 185 (1965).CrossRefGoogle Scholar
34.Suzdalev, I. P., Gen, M. Ya, Goldanskii, V. I., and Makarov, E. F., Sov. Phys. JETP 24, 79 (1967).Google Scholar
35.Hayes, M. Cordey, Chemical Applications of Mössbauer Spectroscopy, edited by Goldanskii, V. I. and Herber, R. H. (Academic Press, New York, 1968), Chap. 5.Google Scholar
36.Nikolaev, V. I. and Rusakov, V. S., Sov. Phys.-Solid State 17, 200 (1975).Google Scholar