Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T03:59:41.296Z Has data issue: false hasContentIssue false

Microstructural study of GaAs epitaxial layers on Ge(100) substrates

Published online by Cambridge University Press:  03 March 2011

N. Guelton
Affiliation:
INRS Energie et Matériaux, CP 1020, Varennes, Québec, Canada J3X 1S2
R.G. Saint-Jacques
Affiliation:
INRS Energie et Matériaux, CP 1020, Varennes, Québec, Canada J3X 1S2
G. Lalande
Affiliation:
INRS Energie et Matériaux, CP 1020, Varennes, Québec, Canada J3X 1S2
J-P. Dodelet
Affiliation:
INRS Energie et Matériaux, CP 1020, Varennes, Québec, Canada J3X 1S2
Get access

Abstract

GaAs layers grown by close-spaced vapor transport on (100) Ge substrates have been investigated as a function of the experimental growth conditions. The effects on the microstructure of the surface preparation, substrate misorientation, and annealing were studied using optical microscopy and transmission electron microscopy. Microtwins and threading dislocations are suppressed by oxide desorption before deposition. Single domain GaAs layers have been obtained using a 50 nm thick double domain buffer layer on an annealed Ge substrate misoriented 3°toward [011]. The mismatch strain is mainly accommodated by dissociated 60°dislocations. These misfit dislocations extend along the interface by the glide of the threading dislocations inherited from the substrate, but strong interaction with antiphase boundaries (APB's) prevents them from reaching the interface. These results are discussed and compared with previous reports of GaAs growth on Ge(100).

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fang, S. F., Adomi, K., Lyer, S., Morkoç, H., Zabel, H., Choi, C., and Otsuka, N., J. Appl. Phys. 68, R31 (1990).CrossRefGoogle Scholar
2Roedel, J., Von Nieda, A. R., Caruso, R., and Dawson, L. R., J. Electrochem. Soc. 26, 637 (1979).CrossRefGoogle Scholar
3El-Masry, N. A., Tarn, J. C., and Karam, N. H., J. Appl. Phys. 64, 3672 (1988).CrossRefGoogle Scholar
4Chand, N., People, R., Baiocchi, F. A., Wecht, K. W., and Cho, A. Y., Appl. Phys. Lett. 49, 815 (1986).CrossRefGoogle Scholar
5Choi, C., Otsuka, N., Munns, G., Houdre, R., Morkoç, H., Zhang, S. L., Levi, D., and Klein, M. V., Appl. Phys. Lett. 50, 992 (1987).CrossRefGoogle Scholar
6Akiyama, M., Kawarada, Y., and Kaminishi, K., J. Cryst. Growth 68, 21 (1984).CrossRefGoogle Scholar
7Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fisher, R., Peng, C. K., and Morkoç, H., Appl. Phys. Lett. 49, 277 (1986).CrossRefGoogle Scholar
8Otsuka, N., Choi, C., Kolodziejski, L. A., Gunshor, R. L., Fisher, R., Peng, C. K., Morkoç, H., Nakamura, Y., and Nagakura, S., J. Vac. Sci. Technol. B 4, 896 (1986).CrossRefGoogle Scholar
9Posthill, J. B., Venkatasubramanian, R., Malta, D. P., Hattangady, S. V., Fountain, G. G., Timmons, M. L., and Markunas, R. J., in Epitaxial Heterostructures, edited by Shaw, D. W., Bean, J. C., Keramidas, V. G., and Peercy, P. S. (Mater. Res. Soc. Symp. Proc. 198, Pittsburgh, PA, 1990), p. 219.Google Scholar
10Fitzgerald, E. A., Xie, Y-H., Monroe, D., Silverman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weir, B. E., J. Vac. Sci. Technol. B 10, 1807 (1992).CrossRefGoogle Scholar
11Strite, S., Ürdü, M. S., Adomi, K., Gao, G-B., Agarwal, A., Rockett, A., Morkoç, H., Li, D., Nakamura, Y., and Otsuka, N., J. Vac. Sci. Technol. B 8, 1131 (1990).CrossRefGoogle Scholar
12Kuo, J. M., Fitzgerald, E. A., Xie, Y. H., and Silverman, P. J., J. Vac. Sci. Technol. B 11, 857 (1993).CrossRefGoogle Scholar
13Strite, S., Biswas, D., Kumar, N. S., Fradkin, M., and Morkoç, H., Appl. Phys. Lett. 56, 246 (1990).Google Scholar
14Koskiahde, E., Cossement, D., Paynter, R., Dodelet, J-P., Jean, A., and Lombos, B. A., Can. J. Phys. 67, 251 (1989).CrossRefGoogle Scholar
15Lalande, G., Guelton, N., Saint-Jacques, R. G., and Dodelet, J-P., Can J. 72, 225 (1994).Google Scholar
16Hirsch, P., Howie, A, Nicholson, R. B., Pashley, D. W., and Whelan, M. J., in Electron Microscopy of Thin Crystals (Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1977).Google Scholar
17Chen, J. S., Kolawa, E., Garland, C. M., and Nicolet, M-A., Appl. Phys. Lett. 59, 1597 (1991).CrossRefGoogle Scholar
18Samsonov, G. V., in The Oxide Handbook, 2nd ed. (IF1 Plenum, New York, 1982).CrossRefGoogle Scholar
19Le Bel, C., Cossement, D., Dodelet, J. P., Leonelli, R., DePuydt, Y., and Bertrand, P., J. Appl. Phys. 73, 1288 (1993).CrossRefGoogle Scholar
20Dodelet, J. P., Tourillon, G., DePuydt, Y., Cossement, D., Guay, D., and Bertrand, P., J. Electrochem. Soc. 138, 3125 (1991).CrossRefGoogle Scholar
21Kawabe, M. and Ueda, T., Jpn. J. Appl. Phys. 26, L994 (1987).CrossRefGoogle Scholar
22Strite, S., Biswas, D., Adomi, K., and Morkoç, H., J. Appl. Phys. 67, 1609 (1990).CrossRefGoogle Scholar
23Petroff, P. M., J. Vac. Sci. Technol. B 4, 874 (1986).CrossRefGoogle Scholar
24Côté, D., Dodelet, J-P., Lombos, B. A., and Dickson, J. I., J. Electrochem. Soc. 133, 1925 (1986).CrossRefGoogle Scholar
25Northup, J. E., Phys. Rev. Lett. 62, 2487 (1989).CrossRefGoogle Scholar
26Kaplan, R., Surf. Sci. 93, 145 (1980).CrossRefGoogle Scholar
27Noge, H., Kano, H., Hashimoto, M., and Igarashi, I., J. Appl. Phys. 64, 2246 (1988).CrossRefGoogle Scholar
28Aspnes, D. E. and Ihm, J., Phys. Rev. Lett. 57, 3054 (1986).CrossRefGoogle Scholar
29Kroemer, H., J. Vac. Sci. Technol. B 5, 1150 (1987).CrossRefGoogle Scholar
30Chadi, D. J., Phys. Rev. Lett. 59, 1691 (1987).CrossRefGoogle Scholar
31Fisher, R., Morkoç, H., Neumann, D. A., Zabel, H., Choi, C., Otsuka, N., Longerbone, M., and Erickson, L. P., J. Appl. Phys. 60, 1640 (1986).CrossRefGoogle Scholar
32Ueda, T., Nishi, S., Kawarada, Y., Akiyama, M., and Kaminishi, K., Jpn. J. Appl. Phys. 25, L789 (1986).CrossRefGoogle Scholar
33Pukite, P. R. and Cohen, P. I., J. Cryst. Growth 81, 214 (1987).CrossRefGoogle Scholar
34Sirota, N. N., in Semiconductors and Semimetals, edited by Willardson, R. K. and Beer, A. C. (Academic Press, New York, 1968), Vol. 4.Google Scholar
35Marée, P. M. J., Barbour, J. C., van der Veen, J. F., Kavanagh, K. L., Bulle-Liewma, C. W. T., and Viegers, M. P. A., J. Appl. Phys. 62, 4413 (1987).CrossRefGoogle Scholar
36Burle, N., Pichaud, B., Guelton, N., and Saint-Jacques, R. G., Inst. Phys. Conf. Ser. 134, 683 (1993).Google Scholar
37Matthews, J. W., Blakeslee, A. E., and Mader, S., Thin Solid Films 33, 253 (1976).CrossRefGoogle Scholar
38Sarma, K., Dalby, R., Rose, K., Aina, O., Katz, W., and Lewis, N., J. Appl. Phys. 56, 2703 (1984).CrossRefGoogle Scholar
39Chu, S. N. G., Nakahara, S., Pearton, S. J., Boone, T., and Vernon, S. M., J. Appl. Phys. 64, 2981 (1988).CrossRefGoogle Scholar