Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T21:01:57.349Z Has data issue: false hasContentIssue false

Microstructural interaction of Y2Ba4Cu8O16 stacking faults within YBa2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

A. F. Marshall
Affiliation:
Center for Materials Research and Department of Applied Physics, Stanford University, Stanford, California 94305
K. Char
Affiliation:
Center for Materials Research and Department of Applied Physics, Stanford University, Stanford, California 94305
R. W. Barton
Affiliation:
Center for Materials Research and Department of Applied Physics, Stanford University, Stanford, California 94305
A. Kapitulnik
Affiliation:
Center for Materials Research and Department of Applied Physics, Stanford University, Stanford, California 94305
S. S. Laderman
Affiliation:
Hewlett Packard Corporation, Palo Alto, California 94304
Get access

Abstract

A transmission electron microscopy study of a post-annealed YBa2Cu3O7−x thin film shows that extra Cu–O planes within the structure can aggregate as stacking faults to form a defect microstructure rather than forming the well-ordered Y2Ba4Cu8O16 phase. Interaction of the stacking faults with the surrounding matrix results in strain effects and microstructural variations which may hinder ordering as well as influencing superconducting properties if occurring in higher concentration. When viewed normal to the plane of the film, the boundaries of the stacking faults can be imaged as dislocation-like defects, indicating the size and shape of the stacking faults and their relationship to other defects such as twins and second phase precipitates.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zandbergen, H. W., Gronsky, R., and Thomas, G., Phys. Status Solidi (a) 105, 207 (1988).Google Scholar
2Marshall, A. F., Barton, R. W., Char, K., Kapitulnik, A., Oh, B., Hammond, R. H., and Laderman, S. S., Phys. Rev. B. 37, 9353 (1988).Google Scholar
3Bordet, P., Chaillout, C., Chenavas, J., Hodeau, J. L., Marezio, M., Karpinski, J., and Kaldis, E., Nature 334, 596 (1988).Google Scholar
4Char, K., Lee, M., Barton, R. W., Marshall, A. F., Bozovic, I., Hammond, R. H., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., Phys. Rev. B 38, 834 (1988).Google Scholar
5Mandich, M., DeSantolo, A. M., Fleming, R. M., Marsh, P., Nakahara, S., Sunshine, S., Kwo, J., Hong, M., Boone, T., Kometani, T. Y., and Martinez-Miranda, L. J., Phys. Rev. B 38, 5031 (1988).Google Scholar
6Karpinsky, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 160, 449 (1989).Google Scholar
7Marshall, A. F., Kapitulnik, A., Char, K., and Barton, R. W., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C. W., Schneemeyer, L. F., and Christen, D. K. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990).Google Scholar
8Eom, C. B., Sun, J. Z., Lairson, B. M., Streiffer, S. K., Marshall, A. F., Anlage, S. M., Bravman, J. C., Geballe, T. H., Laderman, S. S., Taber, R. C., and Jacowitz, R. D., Physica C, submitted.Google Scholar
9Ramesh, R., Hwang, D. M., Nazar, L., Ravi, T. S., Inam, A., Wu, X. D., Dutta, B., Venkatesan, T., Thomas, G., Marshall, A. F., and Geballe, T. H., Science 247, 57 (1990).Google Scholar
10Morris, D. E., Nickel, J. H., Fayn, B., Markelz, A. G., Gronsky, R., Fendorf, M., and Burmester, C. P., in High Temperature Superconductors: Fundamental Properties and Novel Materials Processing, edited by Narayan, J., Chu, C. W., Schneemeyer, L. F., and Christen, D. K. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990).Google Scholar
11Jin, S., Tiefel, T. H., Nakahara, S., Graebner, J. E., O'Bryan, H. M., Fastnacht, R. A., and Kammlott, G. W., preprint.Google Scholar
12Naito, M., Hammond, R. H., Oh, B., Hahn, M. R., Hsu, J. W. P., Rosenthal, P., Marshall, A. F., Beasley, M. R., Geballe, T. H., and Kapitulnik, A., J. Mater. Res. 2, 713 (1987).Google Scholar
13Hendricks, S. and Teller, E., J. Chem. Physics 10, 147 (1942).CrossRefGoogle Scholar
14Bravman, J. C. and Sinclair, R., J. Elec. Micro. Tech. 1, 53 (1984).Google Scholar
15Sarikaya, M., Thiel, B. L., Aksay, L. A., Weber, W. J., and Frydrych, W. S., J. Mater. Res. 2, 736 (1987).Google Scholar
16Clemens, B. M., Nieh, C. W., Kittl, J. A., Johnson, W. L., Josefowicz, J. Y., and Hunter, A. T., Appl. Phys. Lett. 53, 1871 (1989).Google Scholar
17Ramesh, R., Chang, C. C., Xi, X. X., Ravi, T. S., Hwang, D. M., Li, Q., Inam, A., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. (in press).Google Scholar
18Garzon, F. H., Beery, J. G., Brown, D. R., Sherman, R. J., and Raistrick, I. D., Appl. Phys. Lett. 54, 1365 (1989).Google Scholar
19Cava, R. J., Krajewski, J. J., Peck, W. F. Jr, Batlogg, B., Rupp, L. W., Jr., Fleming, R. M., James, A. C. W. P., and Marsh, P., Nature 338, 328 (1989).Google Scholar
20Morris, D. E., Asmar, N. G., Nickel, J. H., Sid, R. L., and Wei, J. Y. T., Physica C 159, 287 (1989).CrossRefGoogle Scholar
21Laderman, S. S., Char, K., Lee, M., Hahn, M. R., Hammond, R. H., Beasley, M. R., Geballe, T. H., Kapitulnik, A., and Barton, R. W., Phys. Rev. B 39, 1648 (1989).Google Scholar
22McElfresh, M. W., Maple, M. B., Yang, K. N., and Fisk, Z., Appl. Phys. A 45, 365 (1988).Google Scholar
23Poole, C. P., Jr., Datta, T., and Farach, Horacia A., Copper Oxide Superconductors (John Wiley and Sons, New York, 1988), p. 137.Google Scholar
24Tafto, J., Suenaga, M., and Sabatini, R. L., Appl. Phys. Lett. 52, 667 (1988).Google Scholar