Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:52:15.385Z Has data issue: false hasContentIssue false

Microstructural inhomogeneities in chemically derived Ba2YCu3O7−x thin films: Implications for flux pinning

Published online by Cambridge University Press:  03 March 2011

P.C. McIntyre
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M.J. Cima
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

A gradient in the density of polytypoidal stacking faults was observed through the thickness of chemically derived epitaxial Ba2YCu3O7−x (BYC) films on (001) LaAlO3. Cross-sectional TEM studies indicated that films of less than 100 nm thickness were faulted, with a high density of polytypoidal stacking faults. A decrease in stacking fault density in thicker films (300-500 nm thick) was found with increasing distance from the most defective layer near the film/substrate interface. An abrupt transition from highly faulted material near the substrate to essentially stacking fault-free BYC in the upper part of the films was observed in several cases. The present observations are compared with the previously reported1 decrease in critical current density with increasing thickness of these films. Possible implications for flux pinning in BYC thin films are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mclntyre, P. C., Cima, M. J., Smith, J. A. Jr., Hallock, R. B., Siegal, M. P., and Phillips, J. M., J. Appl. Phys. 71, 1868 (1992).Google Scholar
2Larbalestier, D., Physics Today 44, 74 (1991).Google Scholar
3Inam, A., Hegde, M. S., Wu, X. D., Venkatesan, T., England, P., Miceli, P. F., Chase, E. W., Chang, C. C., Tarascon, J. M., and Wachtman, J. B., Appl. Phys. Lett. 53, 908 (1988).Google Scholar
4Mankiewich, P. M., Scofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H., and Good, E., Appl. Phys. Lett. 51, 1753 (1987).CrossRefGoogle Scholar
5Westerheim, A. C., McIntyre, P. C., Basu, S. N., Bhatt, D., Yu-Jahnes, L. S., Anderson, A. C., and Cima, M. J., J. Electron. Mater. 22, 1113 (1993).CrossRefGoogle Scholar
6Gupta, A., Cooper, E. I., Jagannathan, R., and Geiss, E. A., in Chemistry of High-Temperature Superconductors II, edited by Nelson, D. L. and George, T. F. (American Chemical Society, Washington, DC, 1988), p. 265.CrossRefGoogle Scholar
7Siegal, M. P., Phillips, J. M., van Dover, R. B., Tiefel, T. H., and Marshall, J. H., J. Appl. Phys. 68, 6353 (1990).CrossRefGoogle Scholar
8Feenstra, R., Lindemar, T. B., Budai, J. D., and Galloway, M. D., J. Appl. Phys. 69, 6569 (1991).CrossRefGoogle Scholar
9Mogro-Campero, A. and Turner, L. G., Appl. Phys. Lett. 58, 417 (1991).CrossRefGoogle Scholar
10Mclntyre, P. C., Cima, M. J., and Ng, M. F., J. Appl. Phys. 68, 4183 (1990).CrossRefGoogle Scholar
11Hirano, S., Hayashi, T., and Miura, M., J. Am. Cerarn. Soc. 73, 885 (1990).CrossRefGoogle Scholar
12Pak, S. S., Montgomery, F. C., Duggan, D. M., Chen, K. C., Mazdiyasni, K. S., Tsai, P. K., Paulius, L. M., and Maple, M. B., J. Am. Ceram. Soc. 75, 2268 (1992).CrossRefGoogle Scholar
13Rupich, M. W., Liu, Y. P., Ibechem, J., and Hachey, J. P., J. Mater. Res. 8, 1487 (1993).CrossRefGoogle Scholar
14McIntyre, P. C. and Cima, M. J., J. Mater. Res. 9, 2219 (1994).CrossRefGoogle Scholar
15McIntyre, P.C., Cima, M. J., Liebenberg, D. H., and Francavilla, T. A., Appl. Phys. Lett. 58, 2033 (1991).Google Scholar
16Liebenberg, D. H., Mclntyre, P. C., Cima, M. J., and Francavilla, T. A., Cryogenics 32, 1066 (1993).CrossRefGoogle Scholar
17Mclntyre, P. C., Cima, M. J., Ng, M. F., Chiu, R. C., and Rhine, W. E., J. Mater. Res. 5, 2771 (1990).CrossRefGoogle Scholar
18McIntyre, P. C., Sc.D. Thesis, Department of Materials Science and Engineering, M.I.T. (1993).Google Scholar
19Schulz, L. G., J. Appl. Phys. 20, 1030 (1949).CrossRefGoogle Scholar
20For a description of the apparatus and experimental methods see: Westerheim, A. C., Ph.D. Thesis, Department of Materials Science and Engineering, M.I.T. (1992).Google Scholar
21Ramesh, R., Hwang, D. M., Barner, J. B., Nazar, L., Ravi, T. S., Inam, A., Dutta, B., Wu, X. D., and Venkatesan, T., J. Mater. Res. 5, 704 (1990).Google Scholar
22Marshall, A. F., Barton, R. W., Char, K., Kapitulnik, A., Oh, B., Hammond, R. H., and Laderman, S. S., Phys. Rev. B 37, 9353 (1988).Google Scholar
23Ramesh, R., Inam, A., Sands, T., and Rogers, C. T., Mater. Sci. Eng. B 14, 188 (1992).Google Scholar
24Ramesh, R., Chang, C. C., Ravi, T. S., Hwang, D. M., Inam, A., Xi, X. X., Li, Q., Wu, X. D., and Venkatesan, T., Appl. Phys. Lett. 57, 1064 (1990).Google Scholar
25Ramesh, R., Inam, A., Hwang, D. M., Ravi, T. S., Sands, T., Xi, X. X., Wu, X. D., Li, Q., Venkatesan, T., and Kilaas, R., J. Mater. Res. 6, 2264 (1991).CrossRefGoogle Scholar
26McIntyre, P. C., Sun, J. Z., Gallagher, W. J., and Cima, M. J., unpublished work.Google Scholar
27Marshall, A. F., Char, K., Barton, R. W., Kapitulnik, A., and Laderman, S. S., J. Mater. Res. 5, 2049 (1990).CrossRefGoogle Scholar
28Clemens, B. M., Nieh, C. W., Kittl, J. A., Johnson, W. L., Josefowicz, J. Y., and Hunter, A. T., Appl. Phys. Lett. 53, 1871 (1988).Google Scholar
29Karpinsky, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 160, 449 (1989).CrossRefGoogle Scholar
30Beyers, R. and Ahn, B. T., Annu. Rev. Mater. Sci. 21, 335 (1991).CrossRefGoogle Scholar
31van Dover, R. B., Gyorgy, E. M., Schneemeyer, L. F., Mitchell, J. W., Rao, K. V., Puzniak, R., and Waszczak, J. V., Nature 342, 55 (1989).CrossRefGoogle Scholar
32Civale, L., Marwick, A., McElfresh, M. W., Malozemoff, A. P., Holtzberg, F., Thompson, J. R., and Kirk, M. A., Phys. Rev. Lett. 65, 1164 (1990).Google Scholar
33Vadlamannati, S., England, P., Stoffel, N. G., Ramesh, R., Ravi, T. S., Hwang, D. M., Findikoglu, A., Li, Q., Venkatesan, T., and McLean, W. L., Appl. Phys. Lett. 57, 2267 (1990).CrossRefGoogle Scholar
34Hylton, T. L. and Beasley, M. R., Phys. Rev. B 41, 11669 (1990).Google Scholar
35McElfresh, M., Miller, T. G., Schaefer, D. M., Reifenberger, R., Muenchausen, R. E., Hawley, M., Foltyn, S. R., and Wu, X. D., J. Appl. Phys. 71, 5099 (1992).CrossRefGoogle Scholar
36Gerber, C., Anselmetti, D., Bednorz, J. G., Mannhart, J., and Schlom, D. G., Nature 360, 279 (1991).CrossRefGoogle Scholar
37Hawley, M., Raistrick, I. D., Beery, J. G., and Houlton, R. J., Science 251, 1587 (1991).CrossRefGoogle Scholar
38Lang, H. P., Frey, T., and Güntherodt, H-J., Europhys. Lett. 15, 667 (1991).Google Scholar
39Campbell, A. M. and Evetts, J. E., Adv. Phys. 21, 191 (1972).Google Scholar
40Roshko, A., NIST, Boulder, CO, personal communication (1992).Google Scholar
41Tazoh, Y. and Miyazawa, S., Appl. Phys. Lett. 62, 408 (1993).Google Scholar
42Mclntyre, P. C., Cima, M. J., and Roshko, A., unpublished.Google Scholar
43Wen, J. G., Traeholt, C., and Zandbergen, H. W., Physica C 205, 354 (1993).Google Scholar
44Kontra, R., Sc.D. Thesis, Department of Materials Science and Engineering, M.I.T. (1992).Google Scholar