Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:28:46.676Z Has data issue: false hasContentIssue false

Microstructural features and superconducting properties of Mn-doped YBa2Cu3O7−δ

Published online by Cambridge University Press:  03 March 2011

Indu Dhingra
Affiliation:
Division of Materials, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012, India
S.C. Kashyap
Affiliation:
Department of Physics, I.I.T, Hauz Khas, New Delhi−110012, India
B.K. Das
Affiliation:
Division of Materials, National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi-110012, India
Get access

Abstract

Small additions of MnO2 up to 15 at. % in YBa2Cu3O7−δ in place of Cu have been carried out to study their influence on the superconducting properties. It has been found that transition temperature and microstructure of Mn-doped samples are highly sensitive to the sintering temperature and Mn content. The normal state resistance increases with Mn content. Microstructure shows plate-like grain growth for low Mn contents (up to x = 0.05) at higher sintering temperature. XRD and microstructure reveals the presence of additional Y2BaCuO5 and Ba3Mn2O8 phases with an increase in Mn content. Also, reduction in the diamagnetic signal and broadening of transition is observed beyond certain Mn content. A detailed discussion of microstructure, XRD, normalized resistance, and magnetic properties has been carried out in correlation with sintering temperature and Mn content.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Xiao, G., Streitz, F. H., Gavrin, A., Du, Y. W., and Chien, C. L., Phys. Rev. B 35, 8702 (1987).Google Scholar
2Strobel, P., Paulsen, C., and Tholence, J. L., Solid State Commun. 65, 585 (1988).CrossRefGoogle Scholar
3Zhou, X. Z., Raudsepp, M., Pankurst, Q. A., Morrish, A. H., Luo, Y. L., and Maarteuse, I., Phys. Rev. B 36, 7230 (1987).Google Scholar
4Tarascon, J. M., Barboux, P., Micelli, P. F., Greene, L. H., Hull, G. W., Eibschutz, M., and Sunshine, S. A., Phys. Rev. B 37, 7458 (1988).CrossRefGoogle Scholar
5Baggio-Saitovich, E., Azevedo, I. S., Scorzelli, R. B., Saitovich, H., da Cunha, S. F., Guimaraes, A. P., Silva, P. R., and Takeuchi, A., Phys. Rev. B 37, 7967 (1988).Google Scholar
6Dhingra, I., Tripathi, R. B., Padam, G. K., Kashyap, S. C., and Das, B. K., Solid State Phenom. 25 & 26, 379 (1992).Google Scholar
7Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52, 2074 (1988).Google Scholar
8Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
9Ganpathi, L., Kumar, A., and Narayan, J., J. Appl. Phys. 66, 5935 (1989).CrossRefGoogle Scholar
10Lin, J. J., Chen, T. M., Rao, Y. D., Chen, J. W., and Gou, Y. S., Jpn. J. Appl. Phys. 29, 497 (1990).CrossRefGoogle Scholar
11Dhingra, I., Padam, G. K., Singh, S., Tripathi, R. B., Rao, S. U. M., Suri, D. K., Nagpal, K. C., and Das, B. K., J. Appl. Phys. 70, 1775 (1991).CrossRefGoogle Scholar
12Jardim, R. F., Gama, S., de Lima, O.F., and Torriani, I., Phys. Rev. B 38, 4580 (1988).CrossRefGoogle Scholar
13Jardim, R. F. and Gama, S., Physica C 159, 306 (1989).Google Scholar
14Murakami, H., Suga, T., Noda, T., Shiohara, Y., and Tanaka, S., Jpn. J. Appl. Phys. 29, 2720 (1990).CrossRefGoogle Scholar
15Jain, G. C., Das, B. K., and Kumari, S., IEEE Trans. Magn. Magn. 16, 1428 (1980).Google Scholar