Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T06:54:34.788Z Has data issue: false hasContentIssue false

Microstructural effects on surface mechanical properties of ion-implanted polymers

Published online by Cambridge University Press:  31 January 2011

G.R. Rao
Affiliation:
Metals and Ceramics Division, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6376
Z.L. Wang
Affiliation:
Metals and Ceramics Division, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6376
E.H. Lee
Affiliation:
Metals and Ceramics Division, P.O. Box 2008, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6376
Get access

Abstract

Tefzel, a copolymer of tetrafluoroethylene and ethylene, was implanted simultaneously with 400 keV boron, 700 keV nitrogen, and 600 keV carbon to a dose of 3 × 1015 ions/cm2 for each ion. The implanted layer was examined using transmission electron microscope and compared with the pristine Tefzel for microstructural changes. The microhardness of the implanted and pristine Tefzel was determined using a nanoindentation technique. TEM bright-field images of the implanted layer show a patch-type contrast with distinguishable bright and dark regions. Electron energy loss spectroscopy (EELS) was used to show that the bright regions had a higher carbon concentration, as compared with the dark regions. The carbon-rich regions had an average size of approximately 40 nm. The pristine material showed a fairly featureless contrast with occasional local patchy regions. These were determined to be due to local thickness variations. The triple implantation improved the hardness of pristine Tefzel by over 66 times. The structure of the carbon-rich regions appears to be clusters of sp2 bonded C atoms with sp3 sites present and hydrogen preferentially bonded in the sp3 C configuration. It was speculated that the carbon-rich regions could be harder than the surrounding regions, but this could not be resolved due to the small size of the regions.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Lee, E. H., Lewis, M. B., Blau, P.J., and Mansur, L. K., J. Mater. Res. 6, 610628 (1991).CrossRefGoogle Scholar
2Davenas, J., Thevenard, P., Boiteux, G., Fallavier, M., and Lu, X. L., Nucl. Instrum. Methods B46, 322 (1990).Google Scholar
3Compagnini, G., Reitano, R., Calcagno, L., Marietta, G., and Foti, G., Appl. Surf. Sci. 43, 231 (1989).Google Scholar
4Lovinger, A.J., Forrest, S. R., Kaplan, M. L., Schmidt, P. H., and Venkatesan, T., J. Appl. Phys. 55 (2), 480481 (1984).Google Scholar
5Fink, D., Ibel, K., Goppelt, P., Biersack, J.P., Wang, L., and Behar, M., Nucl. Instrum. Methods B46, 345 (1990).Google Scholar
6Lewis, M. B., Allen, W. R., Buhl, R. A., Packan, N. H., Cook, S. W., and Mansur, L.K., Nucl. Instrum. Methods B43, 243 (1989).Google Scholar
7Oliver, W.C., Mater. Res. Bull. September/October, 15 (1986).Google Scholar
8Lewis, M. B. and Lee, E. H., Nucl. Instrum. Methods B61, 457 (1991).Google Scholar
9Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope (Plenum Press, New York, 1986).Google Scholar
10Creuzburg, M. and Dimigen, H., Z. Phys. 174, 24 (1963).Google Scholar
11Pethica, J. B., Hutchings, R., and Oliver, W.C., Philos. Mag. A 48 (4), 593 (1983).Google Scholar
12Doerner, M.F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).Google Scholar
13Lee, E. H., Lee, Y., Oliver, W. C., and Mansur, L. K., J. Mater. Res. 8, 377387 (1993).Google Scholar
14Egerton, R. F. and Whelan, M. J., J. Electron Spectrosc. 3, 232236 (1974).Google Scholar
15Hansen, P.L., Fallon, P.J., and Kratschmer, W., Chem. Phys. Lett. 181 (4), 368 (1991).Google Scholar
16Venkatesan, T., Dynes, R. C., Wilkens, B., White, A.E., Gibson, J.M., and Hamm, R., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1984), p. 449.Google Scholar
17Foti, G. and Reitano, R., Nucl. Instrum. Methods B46, 307 (1990).Google Scholar
18Calcagno, L. and Foti, G., Nucl. Instrum. Methods B59/60, 11531158 (1991).Google Scholar
19Robertson, J. and O'Reilly, E. P., Phys. Rev. B 35 (6), 2953 (1987).Google Scholar
20Tuinstra, P. and Koenig, J. L., J. Chem. Phys. 53 (3), 1128 (1970).CrossRefGoogle Scholar
21Dischler, B., Bubenzer, A., and Koidl, P., Solid State Commun. 48 (2), 107 (1983).CrossRefGoogle Scholar