Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T17:20:29.086Z Has data issue: false hasContentIssue false

Microstructural effects on dielectric and piezoelectric behavior of calcium-modified lead titanate ceramics

Published online by Cambridge University Press:  03 March 2011

J. Ricote
Affiliation:
Instituto de Ciencia de Materiales (Sede A). C.S.I.C., Serrano, 144, 28006 Madrid, Spain
C. Alemany
Affiliation:
Instituto de Ciencia de Materiales (Sede A). C.S.I.C., Serrano, 144, 28006 Madrid, Spain
L. Pardo
Affiliation:
Instituto de Ciencia de Materiales (Sede A). C.S.I.C., Serrano, 144, 28006 Madrid, Spain
Get access

Abstract

This work presents an analysis on the main microstructural parameters that affect the dielectric and piezoelectric behavior of ceramics of calcium-modified lead titanate with Ca/Pb = 26/74. To this aim, ceramics were prepared under different sintering conditions to get a series of materials with different microstructures. Compositional and microstructural characterization was achieved by x-ray diffraction, energy dispersion spectroscopy, and optical microscopy. Computerized image analysis was carried out on the micrographs to determine grain and pore size distributions. These distributions were thoroughly analyzed using probability plots. Electromechanical coupling factors and piezoelectric coefficients were measured by the resonance method on thickness poled thin disks and rectangular bars. A similar combined effect of the grain size and the percentage of porosity on the inverse of the permittivity, the coupling factors at room temperature, and the temperature behavior of the electromechanical coupling factor k31 is found.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Yamashita, Y., Takahashi, T., and Yoshida, S., Ferroelectrics 54, 131 (1984).Google Scholar
2Takeuchi, H., Jyomura, S., Yamamoto, E., and Ito, Y., J. Acoust. Soc. Am. 72, 1114 (1982).Google Scholar
3Damjanovic, D., Gururaja, T. R., Jang, S. J., and Cross, L. E., Mat. Lett. 4, (10), 414 (1986).Google Scholar
4Mendiola, J., Alemany, C., Pardo, L., Jiménez, B., del Olmo, L., and Mauer, E., J. Mater. Sci. 22, 4395 (1987).Google Scholar
5Wersing, W., Lubitz, K., and Mohaupt, J., IEEE Trans. Ultrason. Ferr. 36 (4), 424 (1989).Google Scholar
6Jiménez, B., and de Frutos, J., Ferroelectrics 109, 107 (1990).Google Scholar
7Vicente, J. M. and Jiménez, B., Ferroelectrics 134, 157 (1992).Google Scholar
8Arlt, G. and Dederichs, H., Ferroelectrics 29, 47 (1980).CrossRefGoogle Scholar
9Krüger, G., Ferroelectrics 11, 417 (1976).Google Scholar
10Hayes, J. M., Gururaja, T. R., Cross, L. E., and Geoffroy, G. L., J. Mater. Sci. 23, 2087 (1988).Google Scholar
11Yamaoto, T., Saho, M., Okazaki, K., and Goo, E., Jpn. J. Appl. Phys. 26 (Suppl. 26–2), 57 (1987).Google Scholar
12De Villiers, D. R. and Schmid, H. K., J. Mater. Sci. 25, 3215 (1990).CrossRefGoogle Scholar
13Del Olmo, L., Fandiño, C., Pina, J. I., Alemany, C., Mendiola, J., Pardo, L., Jiménez, B., and Mauer, E., Patente Española de Invention #555469 (1986).Google Scholar
14Allen, T., Particle Size Measurement (Chapman and Hall, London, 1981), Chap. 4.Google Scholar
15Kurtz, S. K. and Carpay, F. M. A., J. Appl. Phys. 51 (11), 5745 (1980).Google Scholar
16IEEE Standards on Piezoelectricity, ANSI/IEEE Std. 176 (1987).Google Scholar
17Alemany, C., Pardo, L., Jiménez, B., Carmona, F., Mendiola, J., and González, A. M., J. Phys. D: Appl. Phys. 27, 148 (1994).Google Scholar
18Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, 2nd ed. (John Wiley / Sons, New York, 1976), Chap. 10, p. 454.Google Scholar
19Thompson, A. M. and Harmer, M. P., J. Am. Ceram. Soc. 75 (4), 976 (1992).Google Scholar
20Yoon, K. H. and Lee, M. J., Ferroelectrics 119, 53 (1991).Google Scholar
21Yomura, S., Nagatsuma, K., and Takeuchi, H., J. Appl. Phys. 52 (7), 4472 (1981).Google Scholar
22Pardo, L., Ricote, J., Alemany, C., Jiménez, B., and Millar, C. E., in Proc. 8th IEEE Int. Symp. on Appl. of Ferroelectrics, Greenville, SC, edited by Liu, M., Safari, A., Kingon, A., and Haertling, G. (1992), p. 512.Google Scholar
23Arlt, G., Hennings, D., and de With, G., J. Appl. Phys. 58 (4), 1619 (1985).CrossRefGoogle Scholar
24King, G. and Goo, E. K., J. Am. Ceram. Soc. 73 (6), 1534 (1990).Google Scholar