Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T16:14:17.505Z Has data issue: false hasContentIssue false

Microstructural development of SCS-6 SiC fibers during high temperature creep

Published online by Cambridge University Press:  31 January 2011

Lucille A. Giannuzzi
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, Pennsylvania 16802
Charles A. Lewinsohn
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, Pennsylvania 16802
Charles E. Bakis
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, Pennsylvania 16802
Richard E. Tressler
Affiliation:
Center for Advanced Materials, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Extract

Microstructural development of SCS-6 SiC fibers induced by creep deformation at 1400 °C is presented. Grain growth occurs in all SiC regions of the fiber during creep. Portions of the SiC4 region transform from βSiC to αSiC growing at the expense of the βSiC. The SiC1 through SiC3 regions of the fiber consist of a distinct (C + βSiC) two-phase region. The grain growth of the βSiC grains in the two-phase region is not as extensive as in the SiC4 region, suggesting that the presence of excess carbon may inhibit the growth of βSiC.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lewinsohn, C. A., Giannuzzi, L. A., Bakis, C. E., and Tressler, R. E., J. Am. Ceram. Soc. (in review).Google Scholar
2.Lewinsohn, C. A., Bakis, C. E., and Tressler, R. E., in Ceramic Transactions, 38, Advances in Ceramic Matrix Composites, edited by Bansal, N. (The American Ceramic Society, Westerville, OH, 1993).Google Scholar
3.Ning, X. J. and Pirouz, P., J. Mater. Res. 6, 22342248 (1991).Google Scholar
4.Nutt, S. R. and E, F..Wawner, J. Mater. Sci. 20, 19531960 (1985).Google Scholar
5.Wawner, F. W., Teng, A. Y., and Nutt, S. R., SAMPE Quarterly 14 (3), 3945 (1983).Google Scholar
6.Ning, X. J., Pirouz, P., and Farmer, S. C., J. Am. Ceram. Soc. 76 (8), 20332041 (1993).CrossRefGoogle Scholar
7.Ning, X. J., Pirouz, P., and Bhatt, R. T., in Chemical Vapor Deposition of Refractory Metals and Ceramics II, edited by Besmann, T. M., Gallois, B. M., and Warren, J. (Mater. Res. Soc. Symp. Proc. 250, Pittsburgh, PA, 1992), pp. 187192.Google Scholar
8.Klepeis, S. J., Benedict, J. P., and Anderson, R. M., in Specimen Preparation for Transmission Electron Microscopy of Materials, edited by Bravman, J. C., Anderson, R. M., and McDonald, M. L. (Mater. Res. Soc. Symp. Proc. 115, Pittsburgh, PA, 1988), pp. 179184.Google Scholar
9.Corman, G. S., J. Am. Ceram. Soc. 75 (12), 34213424 (1992).CrossRefGoogle Scholar
10.Ogbuji, L. U., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc. 64 (2), 9199 (1981).CrossRefGoogle Scholar
11.Mitchell, T. E., Ogbuji, L. U., and Heuer, A. H., J. Am. Ceram. Soc. 61 (9-10), 412413 (1978).CrossRefGoogle Scholar
12.Pandey, D. and Krishna, P., in Silicon Carbide–1973, edited by Marshall, R. C., Faust, J. W. Jr., and Ryan, C. E. (University of South Carolina Press, Columbia, SC, 1974), pp. 198205.Google Scholar
13.Yang, J. W. and Pirouz, P., J. Mater. Res. 8, 29022906 (1993).CrossRefGoogle Scholar
14.Page, T. F., Sawyer, G. R., Adewoye, O. O., and Wert, J. J., Proc. Brit. Ceram. Soc. 26, 193208 (1978).Google Scholar
15.Yang, J. W., Suzuki, T., Pirouz, P., Powell, J. A., and Iseki, T., in Wide Band Gap Semiconductors, edited by Moustakas, T. D., Pankove, J. I., and Hamakawa, Y. (Mater. Res. Soc. Symp. Proc. 242, Pittsburgh, PA, 1992), pp. 531536.Google Scholar