Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T22:43:15.908Z Has data issue: false hasContentIssue false

Microstructural and nonlinear optical properties of SiO2 and Al2O3 nanoparticles doped in polyurethane

Published online by Cambridge University Press:  05 May 2015

Marzieh Nadafan
Affiliation:
Department of Physics, Tarbiat Modares University, Tehran 14115–175, Iran
Rasoul Malekfar*
Affiliation:
Department of Physics, Tarbiat Modares University, Tehran 14115–175, Iran
Zahra Dehghani
Affiliation:
Department of Physics, University of Neyshabur, Neyshabur 9319774400, Iran
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polyurethane open cell (PUOC) composites containing SiO2 and Al2O3 nanoparticles (NPs) were prepared. Scanning electron microscopy and Z-scan methods were used for observing porosity and detecting third-order nonlinear optical properties of related samples. Adding NPs into polymer matrix decreased the cell size and subsequently increased the porosity of samples. The nonlinear effects of samples were increased by adding 1 wt% of NPs into polymer in comparison with blanks. However, those features were decreased again through higher loading (up to 2.0 wt%) of NPs. The nonlinear refractive indices and nonlinear absorption coefficients of the synthesized samples were obtained in the order of 10−8 (cm2/W) with negative sign and 10−5 (cm/W), respectively. All the results suggest that the nonlinear coefficients of the synthesized samples can be controlled by NP contents in PUOC.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Winston Schoenfeld

References

REFERENCES

Chirackal Varkey, E. and Sreekumar, K.: Optical and thermal properties of diethyl-(2R, 3R) (+)-tartrate based chiral polyurethanes with main chain amido chromophores. J. Appl. Polym. Sci. 119, 111 (2011).10.1002/app.32593CrossRefGoogle Scholar
Chin, K.C., Gohel, A., Elim, H.I., Chen, W., Ji, W., Chong, G.L., Sow, C.H., and Wee, A.T.S.: Modified carbon nanotubes as broadband optical limiting nanomaterials. J. Mater. Res. 21, 2758 (2011).10.1557/jmr.2006.0338CrossRefGoogle Scholar
Henari, F.Z. and Dakhel, A.A.: Investigation of nonlinear optical properties of gold nanograins embedded in indium oxide films by reflection Z-scan using continuous laser. J. Appl. Phys. 108, 1 (2010).10.1063/1.3524281CrossRefGoogle Scholar
Rai, R.N. and Lan, C.W.: Crystal structure and properties of a new organic nonlinear optical material. J. Mater. Res. 17, 1587 (2002).10.1557/JMR.2002.0236CrossRefGoogle Scholar
Rath, P., Khasminskaya, S., Nebel, C., Wild, C., and Pernice, W.H.P.: Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films. Beilstein J. Nanotechnol. 4, 300 (2013).10.3762/bjnano.4.33CrossRefGoogle ScholarPubMed
Maranski, K., Kucharski, S., Ortyl, E., Nunzi, J.M., Ahmadi-Kandjani, S., Dabos-Seignon, S., Chan, S.W., and Barille, R.: Second harmonic generation and photochromic grating in polyurethane films containing diazoisoxazolechromophore. Opt. Mater. 30, 1832 (2008).10.1016/j.optmat.2007.11.030CrossRefGoogle Scholar
Bomm, J., Buchtemann, A., Fiore, A., Manna, L., Nelson, J.H., Hill, D., and Van Sark, W.G.J.H.M.: Fabrication and spectroscopic studies on highly luminescent CdSe/CdS nanorod polymer composites. Beilstein J. Nanotechnol. 1, 94 (2010).10.3762/bjnano.1.11CrossRefGoogle ScholarPubMed
Boyd, R.W.: Nonlinear Optics, 3th ed. (Academic Press, New York, 2007); pp. 210.Google Scholar
Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., and Van Stryland, E.W.: Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760 (1990).10.1109/3.53394CrossRefGoogle Scholar
Ashida, K.: Polyurethane and Related Foams: Chemistry and Technology (Taylor & Francis Group, New York, 2007).Google Scholar
Basirjafari, S., Malekfar, R., and Esmaielzadeh Khadem, S.: Low loading of carbon nanotubes to enhance acoustical properties of poly (ether) urethane foams. J. Appl. Phys. 112, 104312 (2012).10.1063/1.4765726CrossRefGoogle Scholar
Peng, H.X., Fan, Z., and Evans, J.R.J.: Factors affecting the microstructure of a fine ceramic foam. Ceram. Int. 26, 887 (2000).10.1016/S0272-8842(00)00032-8CrossRefGoogle Scholar
Matos, M.J., Dias, S., and Costa Oliveira, F.A.: Macrostructural changes of polymer replicated open-cell cordierite based foams upon sintering. Adv. Appl. Ceram. 106, 209 (2007).10.1179/174367607X159338CrossRefGoogle Scholar
Stuart, B.: Infrared Spectroscopy: Fundamentals and Applications (John Wiley & Sons, New Jersey, 2004).10.1002/0470011149CrossRefGoogle Scholar
Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New Jersey, 2009).Google Scholar
Luo, Z., Hong, R.Y., Xie, H.D., and Feng, W.G.: One-step synthesis of functional silica nanoparticles for reinforcement of polyurethane coatings. Powder Technol. 218, 23 (2012).10.1016/j.powtec.2011.11.023CrossRefGoogle Scholar
Sadeghi, M., Semsarzadeh, M.A., Barikani, M., and Pourafshari Chenar, M.: Gas separation properties of polyether-based polyurethane–silica nanocomposite membranes. J. Membr. Sci. 376, 188 (2011).10.1016/j.memsci.2011.04.021CrossRefGoogle Scholar
Gong, B. and Parsons, G.N.: Caprolactone ring-opening molecular layer deposition of organic-aluminum oxide polymer films. ECS J. Solid State Sci. Technol. 1, 210 (2012).10.1149/2.023204jssCrossRefGoogle Scholar
Li Guo, S., Gu, B., and Zhang, T.: Third-order nonlinearities and optical limiting of C60 polyurethane-urea films. J. Nonlinear Opt. Phys. Mater. 13, 45 (2004).10.1142/S0218863504001748CrossRefGoogle Scholar
Wu, F., Tian, W., Chen, W., Zhang, G., Zhao, G., Cao, S., and Xie, W.: Optical nonlinearity and optical limiting of CdSeS/ZnS quantum dots. J. Mod. Opt. 56, 1868 (2009).10.1080/09500340903377717CrossRefGoogle Scholar
Ye, F., Qiu, F., Yang, D., Cao, G., Guan, Y., and Zhuang, L.: Preparation and thermo-optic switch properties based on chiral azobenzene-containing polyurethane. Opt. Laser Technol. 49, 56 (2013).10.1016/j.optlastec.2012.12.009CrossRefGoogle Scholar
Van Stryland, E.W., Sheik-Bahae, M., Said, A.A., and Hagan, D.: Characterization of nonlinear optical absorption and refraction. Prog. Cryst. Growth Charact. Mater. 27, 279 (1993).10.1016/0960-8974(93)90026-ZCrossRefGoogle Scholar
Pramodini, S., Poornesh, P., and Nagaraja, K.K.: Thermally induced nonlinear optical response and optical power limiting of acid blue 40 dye. Curr. Appl. Phys. 13, 1175 (2013).10.1016/j.cap.2013.03.002CrossRefGoogle Scholar
Espinosa, D.H.G. and Onmori, R.K.: Optical nonlinearities and thermal lens effect of a-Si:H films investigated by Z-scan technique. Phys. Procedia 28, 33 (2012).10.1016/j.phpro.2012.03.666CrossRefGoogle Scholar
Rudresha, B.J., Bhat, B.R., Ramakrishna, D., Anthony, J.K., Lee, H.W., and Rotermund, F.: Nonlinear optical study of palladium Schiff base complex using femtosecond differential optical Kerr gate and Z-scan techniques. Opt. Laser Technol. 44, 1180 (2012).10.1016/j.optlastec.2011.11.009CrossRefGoogle Scholar
Wang, J., Fan, Y.X., Chen, J., Gu, B., and Wang, H.T.: Nonlinear properties of polyurethane-urea/multi-wall carbon nanotube composite films. Opt. Laser Technol. 42, 959 (2010).10.1016/j.optlastec.2010.01.014CrossRefGoogle Scholar