Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T11:31:42.168Z Has data issue: false hasContentIssue false

Microstructural and mechanical study of an Al matrix composite reinforced by Al-Cu-Fe icosahedral particles

Published online by Cambridge University Press:  31 January 2011

Tarik El Kabir
Affiliation:
Université de Poitiers, Laboratoire de Physique des Matériaux, 86962 Chasseneuil, France
Get access

Abstract

In this study, we produced an Al matrix composite material reinforced by Al-Cu-Fe particles of the icosahedral phase. The composite material was prepared using a hot isostatic pressure technique at T = 673 K and P = 180 MPa. The mechanical properties were investigated by compression tests performed at constant strain rate over the temperature range 290–823 K. The results show a vigorous strengthening effect resulting from the reinforcement particles. Strengthening is attributed to two main contributions arising from load transfer between the Al matrix and the reinforcement particles and from plastic deformation of the Al grains. The present results are compared with those obtained in a previous work on an Al-based composite reinforced by Al-Cu-Fe particles of the ω-tetragonal phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clyne, T.W., Withers, P.J.An Introduction to Metal Matrix Composites (Cambridge University Press, New York 1993)CrossRefGoogle Scholar
2.Chawla, N., Chawla, K.K.Metal Matrix Composites (Springer, New York 2005)Google Scholar
3.Mortensen, A., Needleman, A., Suresh, S.Fundamentals of Metal-Matrix Composites (Butterworth-Heinemann, Woburn, MA 1993)Google Scholar
4.Evans, A., San Marchi, C., Mortensen, A.Metal Matrix Composites in Industry: An Introduction and a Survey (Kluwer Academic Publishers, Dordrecht, The Netherlands 2003)CrossRefGoogle Scholar
5.Lloyd, D.J.Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994)CrossRefGoogle Scholar
6.Aikin, R.M.The mechanical properties of in situ composites. JOM 48, 35 (1997)CrossRefGoogle Scholar
7.Fishman, S.G.In situ compositesScience and Technology edited by M. Singh and D. Lewis (TMS, Warrendale, PA 1994)Google Scholar
8.Giacometti, E., Baluc, N., Bonneville, J., Rabier, J.Microindentations of Al-Cu-Fe icosahedral quasicristal. Scr. Mater. 41, 989 (1999)CrossRefGoogle Scholar
9.Urban, K., Feuerbacher, M., Wollgarten, M.Mechanical behavior of quasicrystals. MRS Bull. 22, 65 (1997)CrossRefGoogle Scholar
10.Schechtman, D., Blecht, I., Gratias, D., Cahn, J.W.Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984)CrossRefGoogle Scholar
11.Sainfort, P., Dubost, B.Coprecipitation hardening in Al-Li-Cu-Mg alloys. J. Phys. C 3, 48407 (1987)Google Scholar
12.Tsaï, A.P., Aoki, K., Akihisa, I., Masumoto, T.Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8, 5 (1993)CrossRefGoogle Scholar
13.Schürack, F., Eckert, J., Schultz, L.Al-Mn-Ce quasicrystalline composites: Phase formation and mechanical properties. Philos. Mag. 83, 807 (2003)CrossRefGoogle Scholar
14.Schürack, F., Eckert, J., Schultz, L.Synthesis and mechanical properties of cast quasicrystal-reinforced Al-alloys. Acta Mater. 49, 1351 (2001)CrossRefGoogle Scholar
15.Schürack, F., Eckert, J., Schultz, L.Synthesis and mechanical properties of mechanically alloyed Al-Cu-Fe quasicrystalline composites. Philos. Mag. 83, 1287 (2003)CrossRefGoogle Scholar
16.Fleury, E., Lee, S.M., Choi, G.Comparison of Al-Cu-Fe quasicrystalline particle reinforced Al composites fabricated by conventional casting and extrusion. J. Mater. Sci. 36, 963 (2001)CrossRefGoogle Scholar
17.Lee, S.M., Jung, J.H., Fleury, E., Kim, D.H.Metal matrix composites reinforced by gas atomised Al-Cu-Fe powders. Mater. Sci. Eng., A 294–296, 99 (2000)CrossRefGoogle Scholar
18.Tang, F.The microstructure-processing-property relationships in an A1 matrix composite system reinforced by Al-Cu-Fe alloy particles. Ph.D. Thesis Iowa State University (2004)Google Scholar
19.Tang, F., Anderson, I.E., Biner, S.B.Microstructures and mechanical properties of pure Al matrix composites reinforced by Al-Cu-Fe alloy particles. Mater. Sci. Eng., A 363, 20 (2003)CrossRefGoogle Scholar
20.Tang, F., Gnaüpel-Herold, T., Prask, H., Anderson, I.E.Residual stresses and stress partitioning measurements by neutron diffraction in Al/Al-Cu-Fe composites. Mater. Sci. Eng., A 399, 99 (2005)CrossRefGoogle Scholar
21.Tang, F., Meeks, H., Spowart, J.E., Gnaüpel-Herold, T., Prask, H., Anderson, I.E.Consolidation effects on tensile properties of an elemental Al matrix composite. Mater. Sci. Eng., A 386, 194 (2004)CrossRefGoogle Scholar
22.El Kabir, T.Study of Al base composite materials reinforced by Al-Cu-Fe particles. Ph.D. Thesis Poitiers, Université de Poitiers (2007)Google Scholar
23.Kenzari, S.Synthesis and characterization of complex metal-intermetallic nano-composites. Ph.D. Thesis Institut National Polytechnique de Lorraine, Nancy (2006)Google Scholar
24.Bown, M.G., Brown, P.J.The structure of FeCu2Al7 and T(CoCuAl). Acta Crystallogr. 9, 911 (1956)CrossRefGoogle Scholar
25.Khaloshkin, S.D., Tcherdyntsev, V.V., Laptev, A.I., Stepashkin, A.A., Afonina, E.A., Pomadchik, A.L., Bugakov, V.I.Structure and mechanical properties of mechanically alloyed Al/Al-Cu-Fe composites. J. Mater. Sci. 39, 5399 (2004)CrossRefGoogle Scholar
26.El Kabir, T., Joulain, A., Gauthier, V., Dubois, J.M., Bonneville, J., Bertheau, D.Hot isostatic pressing synthesis and mechanical properties of Al/Al-Cu-Fe composite materials. J. Mater. Res. 23, 904 (2008)CrossRefGoogle Scholar
27.Giacometti, E., Fikar, J., Baluc, N., Bonneville, J.Mechanical behavior versus structure of Al63.6Cu24.0Fe12.4. Philos. Mag. Lett. 82, 183 (2002)CrossRefGoogle Scholar
28.Giacometti, E.Mechanical properties of icosahedral Al-Cu-Fe quasicrystal. Ph.D. Thesis EPFL, Lausanne-Suisse (1999)Google Scholar
29.Fikar, J., Bonneville, J., Rabier, J., Baluc, N., Proult, A., Cordier, P., Stretton, I.Low temperature plastic behavior of icosahedral Al-Cu-FeQuasicrystals—Preparation, Properties and Applications edited by E. Belin-Ferré, P.A. Thiel, A-P. Tsai, and K. Urban (Mater. Res. Soc. Symp. Proc. 643, Warrendale, PA 2001) K7.3.1Google Scholar
30.Van Lancker, M.Metallurgy of Aluminium Alloys (Chapman and Hall, London 1967)Google Scholar
31.Hall, E.O.The deformation and aging of mild steel: III. Discussion and results. Proc. Phys. Soc. London, Sect. B 64, 747 (1951)CrossRefGoogle Scholar
32.Petch, N.J.The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953)Google Scholar
33.Sherby, O.D.Activation energies for creep of high-purity aluminium. Acta Metall. 5, 219 (1957)CrossRefGoogle Scholar
34.Taylor, G.I.Faults in a material which yields to shear stress while retaining its volume elasticity. Proc. R. Soc. London, Ser. A 145, 18 (1934)Google Scholar
35.Laplanche, G., Joulain, A., Bonneville, J., Schaller, R., El Kabir, T.Microstructures and mechanical properties of Al-base composite materials reinforced by Al-Cu-Fe particles. J. Alloys Compd. 493, 454 (2010)CrossRefGoogle Scholar
36.Tsai, A.P., Aoki, K., Inoue, A., Masumoto, T.Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8, 5 (1993)CrossRefGoogle Scholar
37.Kenzari, S., Weisbecker, P., Geandier, G., Fournee, V., Dubois, J.M.Influence of oxidation of i-AlCuFeB particles on the formation of Al-based composites prepared by solid state sintering. Philos. Mag. 86, 287 (2006)CrossRefGoogle Scholar
38.Miyazaki, S., Kumai, S., Sato, A.Plastic deformation of Al-Cu-Fe quasicrystals embedded in Al2Cu at low temperature. Mater. Sci. Eng., A 400–401, 300 (2005)CrossRefGoogle Scholar
39.Gotman, I., Koczak, M.J., Shetssel, E.Fabrication of Al matrix in situ composites via self-propagating synthesis. Mater. Sci. Eng., A 187, 189 (1994)CrossRefGoogle Scholar