Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T22:46:12.275Z Has data issue: false hasContentIssue false

Microstructural and chemical effects in Al2O3 implanted with iron at room temperature and annealed in oxidizing or reducing atmospheres

Published online by Cambridge University Press:  31 January 2011

C.J. McHargue
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6118
P.S. Sklad
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6118
C.W. White
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6118
G.C. Farlow
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6118
A. Perez
Affiliation:
Département de Physique des Matériaux, Université Claude Bernard Lyon 1, Villeurbanne Cedex, France
G. Marest
Affiliation:
Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard Lyon 1, Villeurbanne Cedex, France
Get access

Abstract

Rutherford backscattering (RBS)-ion channeling, transmission electron microscopy (TEM), and conversion electron Mössbauer spectroscopy (CEMS) have been used to determine the structure of α–Al2O3 implanted with iron at room temperature. Changes produced by post-implantation annealing in oxidizing and reducing atmospheres were followed using the same techniques. Implantation of 160 keV Fe at room temperature produces a damaged but crystalline microstructure for fluences as high as 1 × 1017 Fe/cm2. The iron resides in a variety of local environments: three Fe2+ components, one Fe0 component, and two Fe4+ components. The relative amount of each component varies with implantation fluence. Only the Fe0 component seems to be associated with second-phase formation. In this case, 2 nm diameter α-iron particles were detected by TEM studies. Recovery of implantation-induced disorder in the Al- and oxygen-sublattices occurs in two stages for annealing in oxygen and in one continuous stage for hydrogen-annealing. The end state for iron is Fe3+ for oxygen anneals and Fe0 for hydrogen anneals. The precipitated phases observed are those to be expected from the equilibrium phase diagrams.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Perez, A., Marest, G., Sawicka, B. D., Sawicki, J. A., and Tyliszczak, T., Phys. Rev. B 28, 1227 (1983).CrossRefGoogle Scholar
2.Kowalski, J., Marest, G., Perez, A., Sawicka, B. D., Stanek, J., and Tyliszczak, T., Nucl. Instrum. Methods 209/210, 1145 (1983).Google Scholar
3.Guermazi, M., Marest, G., Perez, A., Sawicka, B. D., Sawicki, J. A., Thevenard, P., and Tyliszczak, T., Mater. Res. Bull. XVIII, 529 (1983).CrossRefGoogle Scholar
4.McHargue, C. J., Farlow, G. C., Sklad, P. S., White, C. W., Perez, A., Kornilios, N., and Marest, G., Nucl. Instrum. Methods B19/20, 813 (1987).CrossRefGoogle Scholar
5.McHargue, C. J., Sklad, P. S., White, C. W., Farlow, G. C., Perez, A., Kornilios, N., and Marest, G., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 119.Google Scholar
6.Bourdillion, A. J., Bull, S. J., and Page, T. F., J. Mater. Sci. 21, 1545 (1986).Google Scholar
7.Bull, S. J., Ph.D. Dissertation, Cambridge University (1988).Google Scholar
8.Donnet, C., Jaffrezic, H., Moncoffre, N., Tousset, J., and Fuchs, G., Nucl. Instrum. Methods B46, 89 (1990).Google Scholar
9.Sklad, P. S., McCallum, J. C., Pennycook, S. J., McHargue, C. J., White, C. W., and Perez, A., in Characterization of the Structure and Chemistry of Defects in Materials, edited by Larson, B. C., Ruhle, M., and Seidman, D. N. (Mater. Res. Soc. Symp. Proc. 138, Pittsburgh, PA, 1989), p. 119.Google Scholar
10.McHargue, C. J., Sklad, P. S., White, C. W., Farlow, G. C., Perez, A., Kornilios, N., and Marest, G., in Materials Modifications by High Fluence Ion Beams, edited by Kelly, R. and da Silva, M. F. (Kluwer, Dordrecht, 1989), p. 245.CrossRefGoogle Scholar
11.Sawicka, B. D. and Sawicki, J. A., in Topics in Current Physics, edited by Gonser, U. (Springer, Berlin, 1981), Vol. 25, pp. 139166.Google Scholar
12.Davisson, C. M. and Manning, I., NRL Report 8859 (Naval Research Laboratory, Washington, DC, 1986).Google Scholar
13.Burnett, P. J. and Page, T. F., in Plastic Deformation of Ceramic Materials, edited by Bradt, R. C. and Tressler, R. E. (Plenum Press, New York, 1984), p. 669.Google Scholar
14.Mouritz, A. P., Sood, D. K., John, D. H. St., Sinain, M. V., and Williams, J. S., Nucl. Instrum. Methods B19/20, 805 (1987).CrossRefGoogle Scholar
15.Greenwood, N. N. and Gibb, T. C., in Mossbauer Spectroscopy (Chapman and Hill Ltd., London, 1971), p. 249.CrossRefGoogle Scholar
16.Yagnik, C. M. and Mather, H. B., J. Phys. C 1, 469 (1968).Google Scholar
17.Catlow, C.R.A., James, R., Mackrodt, W. C., and Stewart, R. F., Phys. Rev. B 25, 1006 (1982).CrossRefGoogle Scholar
18.McLean, M. and Hondros, E. D., J. Mater. Sci. 6, 19 (1971).CrossRefGoogle Scholar
19.Fournier, L., Potin, Y., Grenier, J. C., Demazeau, G., and Pouchard, M., Solid State Commun. 62, 239 (1987).Google Scholar
20.Demazeau, G., Li-Ming, Z., Fournier, L., Pouchard, M., and Hagenmuller, P., J. Solid State Chem. 72, 31 (1988).Google Scholar
21.Sawicki, J. A., Marest, G., and Cox, B., in Structure-Property Relationships in Surface-Modified Ceramics, edited by McHargue, C. J., Kossowsky, R., and Hofer, W. O. (Kluwer, Dordrecht, 1989), p. 209.Google Scholar
22.McHargue, C. J., in Structure-Property Relationships in Surface- Modified Ceramics edited by McHargue, C. J., Kossowsky, R., and Hofer, W. O. (Kluwer, Dordrecht, 1989), p. 117.CrossRefGoogle Scholar