Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-27T06:38:24.688Z Has data issue: false hasContentIssue false

Micron diamond composites with nanocrystalline silicon carbide bonding

Published online by Cambridge University Press:  31 January 2011

J. Qian*
Affiliation:
Texas Christian University, Physics and Astronomy Department, Fort Worth, Texas 76129, and Manuel Lujan, Jr., Neutron Scattering Center, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
T. W. Zerda
Affiliation:
Texas Christian University, Physics and Astronomy Department, Fort Worth, Texas 76129
D. He
Affiliation:
Manuel Lujan, Jr., Neutron Scattering Center, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
L. Daemen
Affiliation:
Manuel Lujan, Jr., Neutron Scattering Center, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. Zhao
Affiliation:
Manuel Lujan, Jr., Neutron Scattering Center, MS-H805, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Diamond composites with nanocrystalline cubic silicon carbide bonding were sintered from diamond/amorphous silicon mixtures under high pressure and high temperature (p = 5 GPa and temperatures up to 1673 K). Differential scanning calorimetry, ex situ x-ray, and Raman spectroscopy investigations showed that amorphous silicon partially transformed into nanocrystalline silicon at 873 K under 5 GPa. This was followed by the formation of nanocrystalline silicon carbide from the reaction between the silicon and diamond after silicon melting. Refinement of the x-ray diffraction patterns of composites with the Rietveld method revealed that considerable microstrain (0.3–0.5%) remained within the nanocrystalline silicon carbide grains. Small strain (0.1–0.2%) was observed in the compacted diamonds, but after the reaction they became almost strain free (<0.1%). Enhanced fracture toughness was obtained for hybrid composites compared to liquid-infiltrated composites.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tomlinson, P.N., Pipkin, N.J., Lammer, A., and Burnand, R.P., Indust. Diamond Rev. 6, 299 (1985).Google Scholar
2.Tillmann, W., Int. J. Refractory Metal & Hard Mater. 18, 301 (2000).CrossRefGoogle Scholar
3.Clark, I.E. and Bex, P.A., Indust. Diamond Rev. 1, 43 (1999).Google Scholar
4.Jiang, X. and Klages, C.P., Appl. Phys. Lett. 61, 1629 (1992).CrossRefGoogle Scholar
5.Voronin, G.A., High Pressure Sintering of Diamond-and CBNbased Composite Materials by Infiltration: Main Stages and Regularities, edited by Nakahara, M. (International Conference on High Pressure Science and Technology, Kyoto, Japan, 1997), p. 467.Google Scholar
6.Ko, Y.S., Tsurumi, T., Fukunaga, O., and Yano, T., J. Mater. Sci. 36, 469 (2001).CrossRefGoogle Scholar
7.Ringwood, A.E., Australia Patent No. 601561 (1988).Google Scholar
8.Gordeev, S.K., Zhukov, S.G., Danchukova, L.V., and Ekstrom, T.C., Inorg. Mater. 37, 579 (2001).CrossRefGoogle Scholar
9.Shulzhenko, A.A., Gargin, V.G., Bochechka, A.A., Oleinik, G.S., and Danilenko, N.V., J. Superhard Mater. 22, 1 (2000).Google Scholar
10.Veprek, S., J. Vac. Sci. Technol. A 17, 2401 (1999).CrossRefGoogle Scholar
11.Andrievski, R.A., Int. J. Refractory Metal Hard Mater. 19, 447 (2001).CrossRefGoogle Scholar
12.Ekimov, E.A., Gavriliuk, A.G., Palosz, B., Gierlotka, S., Dluzewski, P., Tatianin, E., Yu. Kluev, A.M. Naletov, and A. Presz, Appl. Phys. Lett. 77, 954 (2000).CrossRefGoogle Scholar
13.Voronin, G.A., Zerda, T.W., Qian, J., Zhao, Y., He, D., and Dub, S.N. (unpublished).Google Scholar
14.Witek, A., Palosz, B., Stelmakh, S., Geirlotka, S., Pielaszek, R., Ekimov, E., Filonenko, V., Gavriliuk, A., and Gryaznov, V., in High Pressure Materials Research, edited by Wentzcovich, R.M., Hemley, R.J., Nellis, W.J., and Yu, P.Y. (Mater. Res. Soc. Symp. Proc. 499, Warrendale, PA, 1998), p. 115.Google Scholar
15.Qian, J., Voronin, G., Zerda, T.W., He, D., Zhao, Y., J. Mater. Res. 17, 2153 (2002).CrossRefGoogle Scholar
16.Shen, T.D., Koch, C.C., McCormick, T.L., Nemanich, R.J., Huang, J.Y., Huang, J.G., J. Mater. Res. 10, 139 (1995).CrossRefGoogle Scholar
17.Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M., and Jacobson, D.C., Appl. Phys. Lett. 42, 698 (1983).CrossRefGoogle Scholar
18.Howard, C.J., J. Appl. Crystallogr. 15, 615 (1982).CrossRefGoogle Scholar
19.Larson, A.C. and Von Dreele, R.B., General Structure Analysis System (GSAS) manual (Los Alamos National Laboratory, NM), pp. 159166.Google Scholar
20.Ungar, T. and Borbely, A., Nanostruct. Mater. 11, 103 (1999).CrossRefGoogle Scholar
21.Kim, J.H. and Lee, J.Y., J. Appl. Phys. 77, 95 (1995).CrossRefGoogle Scholar
22.Morell, G., Katiyar, R.S., Weisz, S.Z., and Balberg, I., J. Non-Cryst. Solids 194, 78 (1996).CrossRefGoogle Scholar
23.Feldman, D.W., Parker, J.H., Jr., Choyke, W.J., and Patrick, L., Phys. Rev. 173, 787 (1968).CrossRefGoogle Scholar
24.Pantea, C., Gubicza, J., Ungar, T., Voronin, G., and Zerda, T.W., Phys, Rev. B 66, 094106 (2002).CrossRefGoogle Scholar
25.Voronin, G.A., Pantea, C., Zerda, T.W., and Ejsmont, K., J. Appl. Phys. 90, 5933 (2001).CrossRefGoogle Scholar
26.Palosz, B., Gierlotka, S., Stel’makh, S., Pielaszek, R., Zinn, P., Winzenick, M., Bismayer, U., Boysen, H., J. Alloys Compd. 286, 184 (1999).CrossRefGoogle Scholar
27.Zhang, J., Wang, L., Weidner, D.J., Uchida, T., Xu, J., Am. Mineral. 87, 1005 (2002).CrossRefGoogle Scholar