Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T20:11:08.109Z Has data issue: false hasContentIssue false

Micrometer-sized quasicrystals in the Al85Ni5Y6Co2Fe2 metallic glass: A TEM study and a brief discussion on the formability of quasicrystals in bulk and marginal glass-forming alloys

Published online by Cambridge University Press:  16 May 2012

M. Yan*
Affiliation:
The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Centre for Advanced Materials Processing and Manufacturing, Brisbane, QLD 4072, Australia
J.Q. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
C. Kong
Affiliation:
Electron Microscopy Unit, University of New South Wales, Sydney, NSW 2052, Australia
G.B. Schaffer
Affiliation:
The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Centre for Advanced Materials Processing and Manufacturing, Brisbane, QLD 4072, Australia
M. Qian*
Affiliation:
The University of Queensland, School of Mechanical and Mining Engineering, ARC Centre of Excellence for Design in Light Metals, Centre for Advanced Materials Processing and Manufacturing, Brisbane, QLD 4072, Australia
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Large quasicrystals up to ∼10 μm in size with a volume fraction of ∼30% have been identified in a nitrogen gas-atomized marginal glass-forming alloy Al85Ni5Y6Co2Fe2 by detailed transmission electron microscopy. The formation of the large quasicrystal (Q) phase is discussed through the configuration of the valence electrons of its constituent elements, and the thermodynamic and kinetic factors associated with the solidification of this marginal glass-forming alloy during gas atomization. The finding leads to an important inference that marginal glass-forming alloys could be ideal systems for the formation of bulk quasicrystals under appropriate kinetic conditions. The Q phase is stable up to ∼500 °C and decomposes thereafter. The activation energy for the decomposition of the Q phase is similar to the self-diffusion of Al. Two new intermetallic phases associated with the formation and decomposition of the Q phase have also been identified and characterized.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W.: Metallic phase with long-range orientational order and no translational symmetry. Phy. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
2.Janot, C., ed: Quasicrystals: A Primer, 2nd ed. (Oxford University Press Inc., New York, 1994).Google Scholar
3.Tsai, A.P.: Icosahedral clusters, icosahedral order ad stability of quasicrystals—a view of metallurgy. Sci. Technol. Adv. Mater. 9, 013008 (2008).Google Scholar
4.Louzguine-Luzgin, D.V. and Inoue, A.: Formation and properties of quasicrystals. Annu. Rev. Mater. Res. 38, 403 (2008).Google Scholar
5.Inoue, A. and Kimura, H.: High-strength aluminum alloys containing nanoquasicrystalline particles. Mater. Sci. Eng. A 286, 1 (2000).Google Scholar
6.Singh, A., Nakamura, M., Watanabe, M., Kato, A., and Tsai, A.P.: Quasicrystal-strengthened Mg-Zn-Y alloys by extrusion. Scr. Mater. 49, 417 (2003).Google Scholar
7.Dubois, J-M.: Useful Quasicrystals. (World Scientific Publishing Co. Pte. Ltd., 2005 p. 386).Google Scholar
8.Viano, A.M., Majzoub, E.H., Stroud, R.M., Kramer, M.J., Misture, S.T., Gibbons, P.C., and Kelton, K.F.: Hydrogen absorption and storage in quasicrystalline and related Ti–Zr–Ni alloys. Philos. Mag. A 78, 131 (1998).Google Scholar
9.Takasaki, A. and Kelton, K.F.: Hydrogen storage in Ti-based quasicrystal powders produced by mechanical alloying. Int. J. Hydrogen. Energy 31, 183 (2006).CrossRefGoogle Scholar
10.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
11.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 45 (2004).Google Scholar
12.Chen, M.W., Zhang, T., Inoue, A., Sakai, A., and Sakurai, T.: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75, 1697 (1999).Google Scholar
13.Murty, B.S., and Hono, K.: Nanoquasicrystallization of Zr-based metallic glasses. Mater. Sci. Eng. A 312, 253 (2001).Google Scholar
14.Murty, B.S., Ping, D.H., Hono, K., and Inoue, A.: Influence of oxygen on the crystallization behaviour of Zr65Cu27.5Al7.5 and Zr66.7Cu33.3 metallic glasses. Acta Mater. 48, 3985 (2000).Google Scholar
15.Murty, B.S., Kim, W.T., Kim, D.H., and Hono, K.: Nanocrystalline icosahedral phase formation in melt spun Ti-Zr-Ni alloys. Mater. Trans., JIM 42, 372 (2001).CrossRefGoogle Scholar
16.Tsai, A.P., Inoue, A., and Masumoto, T.: Icosahedral, decagonal and amorphous phases in Al-Cu-M (M = transition metal) systems. Mater. Trans., JIM 30, 463 (1989).Google Scholar
17.Tsai, A.P., Inoue, A., and Masumoto, T.: A stable decagonal quasicrystal in the Al–Cu–Co system. Mater. Trans., JIM 30, 300 (1989).Google Scholar
18.Lemmerz, U., Grushko, B., Freiburg, C., and Jansen, M.: Study of decagonal quasi-crystalline phase-formation in the AL-Ni-Fe alloy system. Philos. Mag. Lett. 69, 141 (1994).CrossRefGoogle Scholar
19.Grushko, B., Lemmerz, U., Fischer, K., and Freiburg, C.: The low-temperature instability of the decagonal phase in Al-Ni-Fe. Phys. Status. Solidi. A 155, 17 (1996).CrossRefGoogle Scholar
20.Misra, D.K., Tiwari, R.S., and Srivastava, O.N.: Amorphous to icosahedral phase transformation in rapidly quenched al-Cu-V and al-Cu-Ti alloys. Phys. Status. Solidi. A 200, 326 (2003).Google Scholar
21.Shek, C.H., He, G., Bian, Z., Chen, G.L., and Lai, J.K.L.: Effect of composition and cooling rate on structures and properties of quenched or cast Al-V-Fe alloys. Mater. Sci. Eng. A 357, 20 (2003).Google Scholar
22.He, Y., Poon, S.J., and Shiflet, G.J.: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).CrossRefGoogle ScholarPubMed
23.Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T.: New amorphous-alloys with good ductility in Al-Y-M and al-La-M (M=Fe, Co, Ni or Cu) systems. Jpn. J. Appl. Phys. 27, L280 (1988).Google Scholar
24.Yang, B.J., Yao, J.H., Zhang, J., Yang, H.W., Wang, J.Q., and Ma, E.: Al-rich bulk metallic glasses with plasticity and ultrahigh specific strength. Scr. Mater. 61, 423 (2009).Google Scholar
25.Wilde, G., Sieber, H., and Perepezko, J.H.: Glass formation versus nanocrystallization in an Al92Sm8 alloy. Scr. Mater. 40, 779 (1999).CrossRefGoogle Scholar
26.Inoue, A., Nishiyama, N., and Kimura, H.: Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Mater. Trans., JIM 38, 179 (1997).CrossRefGoogle Scholar
27.Yan, M., Zou, J., and Shen, J.: Effect over-doped yttrium microstructure, mechanical properties thermal properties a Zr-based metallic glass. Acta Mater. 54, 3627 (2006).CrossRefGoogle Scholar
28.Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Discovery of inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).CrossRefGoogle Scholar
29.Bancel, P.A. and Heiney, P.A.: Icosahedral Aluminum transition-metal alloys. Phys. Rev. B 33, 7917 (1986).Google Scholar
30.Smith, A.P. and Ashcroft, N.W.: Pseudopotential and quasicrystals. Phys. Rev. Lett. 59, 1365 (1987).Google Scholar
31.Yan, M., Wang, J.Q., Schaffer, G.B., and Qian, M.A.: Solidification of nitrogen-atomized Al86Ni6Y4.5Co2La1.5 metallic glass. J. Mater. Res. 26, 944 (2011).Google Scholar
32.Dong, P., Hou, W.L., Chang, X.C., Quan, M.X., and Wang, J.Q.: Amorphous and nanostructured Al85Ni5Y6Co2Fe2 powder prepared by nitrogen gas-atomization. J. Alloys Compd. 436, 118 (2007).Google Scholar
33.Choi, P.P., Kwon, Y.S., Kim, J.S., and Al-Lassab, T.: Transmission electron microscopy and atom probe specimen preparation from mechanically alloyed powder using the focused ion-beam lift-out technique. J. Electron Microsc. 56, 43 (2007).CrossRefGoogle ScholarPubMed
34.Kato, N.I.: Reducing focused ion beam damage to transmission electron microscopy samples. J. Electron Microsc. 53, 451 (2007).CrossRefGoogle Scholar
35.He, L.X., Wu, Y.K., and Kuo, K.H.: Decagonal quasicrystals with different periodicities along the 10-fold axis in rapidly solidified Al65Cu20Mn15, Al65Cu20Fe15, Al65Cu20Co15 or Al65Cu20Ni15. J. Mater. Sci. Lett. 7, 1284 (1988).CrossRefGoogle Scholar
36.Inoue, A.: Bulk Amorphous Alloys - Preparation and Fundamental Characteristics. (Trans Tech Publications Ltd., Switzerland, 1998).Google Scholar
37.Gard, J.A.: Interpretation of electron diffraction patterns. in Electron Microscopy in Mineralogy edited by Wenk, H.R., Champness, P.E., Cowley, J.M., Heuer, A.H., Thomas, G., Tighe, N.J. (Springer, Berlin, 1976 p. 52).Google Scholar
38.Yan, M., Shen, J., and Zou, J.: Cooling rate effects on the microstructure and phase formation in Zr51Cu20.7Ni12Al16.3 bulk metallic glass. Sci. Tech. Adv. Mater. 7, 806 (2006).Google Scholar
39.Yan, M., Zou, J., and Shen, J.: New crystalline phases formed in a slowly cooled Zr-based metallic glass. J. Alloys Compd. 433, 120 (2007).Google Scholar
40.Massalski, T.B. and Mizutani, U.: Electronic structure of Hume-Rothery phases. Prog. Mater. Sci. 22, 151 (1978).Google Scholar
41.Tsai, A.P., Inoue, A., and Masumoto, T.: A stable quasi-crystal in Al-Cu-Fe system. Jpn. J. Appl. Phys. 26, 1505 (1987).Google Scholar
42.Poon, S.J.: Electronic properties of quasi-crystals-an experimental review. Adv. Phys. 41, 303 (1992).Google Scholar
43.Qiang, J.B., Wang, D.H., Bao, C.M., Wang, Y.M., Xu, W.P., Song, M.L., and Dong, C.: Formation rule for Al-based ternary quasicrystals: Example of Al-Ni-Fe decagonal phase. J. Mater. Res. 16, 2653 (2001).CrossRefGoogle Scholar
44.Qiang, J.B.: Formation criteria of ternary quasicrystals and their applications in the Al–Ni–Fe and TiZr–Ni systems. Ph.D. Thesis, Dalian Institute of Technology, Dalian, China, 2002.Google Scholar
45.Lei, Y., Dubois, J.M., Calvo-Dahlborg, M., Dong, C., and Zhang, Z.: The formation of an Al-Cu-Co type decagonal quasicrystal in an [AlCuFe]-[AlCoNi] pseudo-binary alloy system. Philos. Mag. 86, 475 (2006).Google Scholar
46.Qiang, J.B., Wang, Y.M., Wang, D.H., Kramer, M., Thiel, P., and Dong, C.: Quasicrystals in the Ti-Zr-Ni alloy system. J. Non-Crys. Solids 334 and 335, 223 (2004).Google Scholar
47.Kittel, C.: Introduction to solid State Physics, 7th ed. (John Wiley, New York, 1996).Google Scholar
48.Lin, X.H., Johnson, W.L., and Rhim, W.K.: Effect of oxygen impurity on crystallization of an undercooled bulk glass-forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans., JIM 38, 473 (1997).CrossRefGoogle Scholar
49.Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M.: Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen. Mater. Trans., JIM 39, 623 (1998).CrossRefGoogle Scholar
50.Gebert, A., Eckert, J., and Schultz, L.: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).Google Scholar
51.Chen, H., Wang, Q., Wang, Y.M., Qiang, J.B., and Dong, C.: Composition rule for Al-transition metal binary quasicrystals. Philos. Mag. 90, 3935 (2010).Google Scholar
52.Cahn, R.W. and Haasen, P.: Physical Metallurgy, 4th ed. (Amsterdam, North-Holland, 1996).Google Scholar
53.Takagi, T., Ohkubo, T., Hirotsu, Y., Hirotsu, Y., Murty, B.S., Hono, K., and Shindo, D.: Local structure of amorphous Zr70Pd30 alloy studied by electron diffraction. Appl. Phys. Lett. 79, 485 (2001).Google Scholar
54.Miracle, D.B., Egami, T., Flores, K.M., and Kelton, K.F.: Structural aspects of metallic glasses. MRS Bull. 32, 629 (2007).Google Scholar
55.Busch, R., Masuhr, A., and Johnson, W.L.: Thermodynamics and kinetics of Zr–Ti–Cu–Ni–Be bulk metallic glass-forming liquids. Mater. Sci. Eng. A 304306, 97 (2001).Google Scholar
56.Kuhn, U., Eymann, K., Mattern, N., Eckert, J., Gebert, A., Bartusch, B., and Schultz, L.: Limited quasicrystal formation in Zr–Ti–Cu–Ni–Al bulk metallic glasses. Acta Mater. 54, 4685 (2006).Google Scholar
57.Miedema, A.R., de Boer, F.R., and de Chatel, P.F.: Empirical description of role of electronegativity in alloy formation. J. Phys. F: Met. Phys. 3, 1558 (1973).Google Scholar
58.Lundy, T.S. and Murdock, J.F.: Diffusion of Al26 and Mn54 in aluminum. J. Appl. Phys. 33, 1671 (1962).Google Scholar