Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T01:55:23.484Z Has data issue: false hasContentIssue false

A micromechanistic model of the combustion synthesis process: Modes of ignition

Published online by Cambridge University Press:  31 January 2011

Cheng He
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Gregory C. Stangle
Affiliation:
School of Ceramic Engineering and Sciences, New York State College of Ceramics at Alfred University, Alfred, New York 14802
Get access

Extract

A theoretical model of the combustion synthesis process has been developed to study the ignition of a self-propagating combustion synthesis process in the Nb–C system. Compared with most of the previously published theoretical work on this subject, this model provides a much more detailed description of the combustion synthesis process from a microscale point of view, due to the fact that it takes into consideration the various microprocesses, such as the melting of reactants, the diffusion and mixing of reactants, and the formation of products. Different ignition modes, including constant-temperature ignition, constant-heat-flux ignition, and variable-temperature ignition, are considered in this work. The key parameters that influence the ignition process are also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Varma, A. and Lebrat, J. P., Chem. Eng. Sci. 47, 21792194 (1992).CrossRefGoogle Scholar
2.Munir, Z. A., Am. Ceram. Soc. Bull. 67, 342349 (1988).Google Scholar
3.Matson, D. M. and Munir, Z. A., Mater. Sci. Eng. A153, 700705 (1992).CrossRefGoogle Scholar
4.Low, I. M., J. Mater. Sci. Lett. 11, 715718 (1992).Google Scholar
5.Pampuch, R., Lis, J., Piekarczyk, J., and Stobierski, L., J. Mater. Syn. Proc. 1, 93100 (1993).Google Scholar
6.Lebrat, J. P., Varma, A., and Miller, A. E., Metall. Trans. A 23, 6976 (1992).CrossRefGoogle Scholar
7.Rabin, B. H., Korth, G. E., and Williamson, R. L., J. Am. Ceram. Soc. 73, 21562157 (1990).CrossRefGoogle Scholar
8.Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 279365 (1989).CrossRefGoogle Scholar
9.Merzhanov, A. G., Combust. Flame 13, 143156 (1969).CrossRefGoogle Scholar
10.Merzhanov, A. G. and Averson, A. E., Combust. Flame 16, 89124 (1971).Google Scholar
11.Lewis, B. and von Elbe, G., J. Chem. Phys. 2, 537544 (1934).Google Scholar
12.Zeldovich, Ya. B. and Frank-Kamenetsky, D. A., Zh. Fiz. Khim. Mosk. 12, 100111 (1938).Google Scholar
13.Zeldovich, Ya. B., Zh. Eksp. Teor. Fiz. 12, 498503 (1942).Google Scholar
14.Puszynski, J., Degreve, J., and Hlavacek, V., Ind. Eng. Chem. Res. 26, 14241434 (1987).CrossRefGoogle Scholar
15.Varma, A., Cao, G., and Morbidelli, M., AIChE J. 36, 10321038 (1990).Google Scholar
16.Bhattacharya, A. K., Ceram. Eng. Sci. Proc. 12 (9–10), 16971722 (1991).Google Scholar
17.Munir, Z. A., J. Mater. Syn. Proc. 1, 387394 (1993).Google Scholar
18.Lakshmikantha, M. and Sekhar, J. A., J. Am. Ceram. Soc. 77, 202210 (1994).Google Scholar
19.Dunmead, S. D., Readey, D. W., Semler, C. E., and Holt, J. B., J. Am. Ceram. Soc. 72, 23182324 (1989).CrossRefGoogle Scholar
20.Vadchennoko, S. G., Bulaev, A. M., Gal'chenko, Y. A., and Merzhanov, A. G., Combust. Explos. Shock Waves 23, 4656 (1987).Google Scholar
21.Pampuch, R. and Stobierski, L., Ceram. Int. 17, 6977 (1991).Google Scholar
22.He, C. and Stangle, G. C., J. Mater. Res. 10, 28292841 (1995).Google Scholar
23.Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 25922604 (1994).Google Scholar
24.Zhang, Y. and Stangle, G. C., J. Mater. Res. 9, 26052619 (1994).Google Scholar
25.Zhang, Y. and Stangle, G. C., J. Mater. Res. 10, 18281845 (1995).Google Scholar
26.Zhang, Y. and Stangle, G. C., J. Mater. Res. 10, 962980 (1995).CrossRefGoogle Scholar
27.He, C. and Stangle, G. C., J. Mater. Res. 13, 146155 (1998).CrossRefGoogle Scholar
28.Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971), pp. 7677.Google Scholar
29.Korotkevich, I. I., Khil'chenko, G. V., Polunina, G. P., and Vidavskii, L. M., Combust. Explos. Shock Waves 17, 535540 (1980).Google Scholar
30.Dimitriou, P., Hlavacek, V., Valone, S. M., Behrens, R. G., Hansen, G. P., and Margrave, J. L., AIChE J. 35, 10851096 (1989).Google Scholar
31.Phung, P. V. and Hardt, A. P., Combust. Flame 22, 323335 (1974).CrossRefGoogle Scholar
32.Varma, A., personal communication (1995).Google Scholar
33.Philpot, K. A., Munir, Z. A., and Holt, J. B., J. Mater. Sci. 22, 159169 (1987).Google Scholar
34.Barzykin, V. V., Pure and Appl. Chem. 64, 909918 (1992).CrossRefGoogle Scholar
35.Wang, L. L., Munir, Z. A., and Holt, J. B., Metall. Trans. 21B, 567577 (1990).Google Scholar