Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T03:28:33.876Z Has data issue: false hasContentIssue false

Micromechanical characterization of chemically vapor deposited ceramic films

Published online by Cambridge University Press:  03 March 2011

J.M. Grow
Affiliation:
New Jersey Institute of Technology, Newark, New Jersey 07102
R.A. Levy
Affiliation:
New Jersey Institute of Technology, Newark, New Jersey 07102
Get access

Abstract

In this study, nanoindentation is used to determine Young's modulus of chemically vapor deposited films consisting of silicon carbide, silicon nitride, boron carbide, boron nitride, and silicon dioxide. Diethylsilane and ditertiarybutylsilane were used as precursors in the synthesis of the silicon-based material, while triethylamine borane complex was used for the boron-based material. The modulus of these films was observed to be dependent on the processing conditions and resulting composition of the deposits. For the silicon carbide, silicon nitride, boron carbide, and boron nitride films, the carbon content in the films was observed to increase significantly with higher deposition temperatures, resulting in a corresponding decrease in values of Young's modulus. The composition of the silicon dioxide films was near stoichiometry over the investigated deposition temperature range (375–475 °C) with correspondingly small variations in the micromechanical properties. Subsequent annealing of these oxide films resulted in a significant increase in the values of Young's modulus due to hydrogen and moisture removal.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Microelectronic Materials and Processes, edited by Levy, R. A. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989).CrossRefGoogle Scholar
2Handbook of Thin Film Technology, edited by Maissel, L. M. and Glang, R. (McGraw-Hill Book Co., New York, 1983).Google Scholar
3Grow, J. M., Levy, R. A., Shi, Y. T., and Pfeffer, R. L., J. Electrochem. Soc. 140, 851 (1993).CrossRefGoogle Scholar
4Grow, J. M., Levy, R. A., Bhaskaran, M., Boeglin, H. J., and Shalvoy, R., J. Electrochem. Soc. 140, 3001 (1993).CrossRefGoogle Scholar
5Paturi, V., Levy, R. A., Grow, J. M., and Mastromatteo, E., Materials Research Society, April 27–May 1, 1992, San Francisco, CA.Google Scholar
6Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
7Oliver, W. C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
8Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 66, 5805 (1989).CrossRefGoogle Scholar
9Taylor, J. A., J. Vac. Sci. Technol. A9, 2464 (1991).CrossRefGoogle Scholar
10Kleber, R., Dworschak, W., Gerber, J., Fuchs, A., Putz, T., Scherer, J., Jung, K., and Ehrhardt, H., Vacuum 41, 1378 (1990).CrossRefGoogle Scholar
11Jiang, X., Reichelt, K., and Stritzker, B., J. Appl. Phys. 66, 5805 (1989).CrossRefGoogle Scholar
12Savvides, N. and Bell, T. J., J. Appl. Phys. 72, 2791 (1992).CrossRefGoogle Scholar
13Wang, M., Schmidt, K., Reichelt, K., Dimigen, H., and Hübsch, H., J. Mater. Res. 7, 667 (1992).CrossRefGoogle Scholar
14CRC Handbook of Chemistry and Physics, edited by Weast, R. C. and Astle, M. J., 60th ed. (CRC Press Inc., Boca Raton, FL, 1982).Google Scholar
15O'Neal, H.E. and Ring, M. A., Organometallics 7, 1017 (1988).CrossRefGoogle Scholar
16Muehoff, L., Choyke, W. J., Bozak, M. J., and Yates, J. T. Jr., Appl.Phys. Lett. 60, 2842 (1986).Google Scholar
17Bozso, F., Muehoff, L., Trenary, M., Choyke, W. J., and Yates, J. T. Jr., J. Vac. Sci. Technol. 2, 1271 (1984).CrossRefGoogle Scholar
18Blaauw, C., J. Electrochem. Soc. 131, 1114 (1984).CrossRefGoogle Scholar
19Chow, R., Lanford, W. A., Ke-Ming, W., and Rosier, R. S., J. Appl.Phys. 53, 5630 (1982).CrossRefGoogle Scholar
20Moriyama, M., Kamata, K., and Tanabe, I., J. Mater. Sci. 26, 1287 (1991).CrossRefGoogle Scholar
21Levy, R. A., Grow, J. M., and Chakravathy, G. S., Chem. Mater. 5 (12), 1710 (1993).CrossRefGoogle Scholar
22Pliskin, W. A., in Semiconductor Silicon, edited by Huff, H. R. and Burgess, R. R. (The Electrochemical Society, Princeton, NJ, 1973), p. 506.Google Scholar
23Kobeda, E., Kellam, M., and Osburn, C. M., J. Electochem. Soc. 138, 1846 (1991).CrossRefGoogle Scholar
24Murase, K., Yabumoto, N., and Komine, Y., J. Electrochem. Soc. 140, 1722 (1993).CrossRefGoogle Scholar