Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T17:56:26.404Z Has data issue: false hasContentIssue false

Mg-based bulk metallic glasses: Elastic properties and their correlations with toughness and glass transition temperature

Published online by Cambridge University Press:  04 March 2011

Shao-Gang Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Ling-Ling Shi
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Jian Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, elastic properties of Mg-based bulk metallic glasses (BMGs) with different chemical compositions were investigated. By compositional tuning in the quaternary Mg–Cu–Ag–Y alloys, the Poisson’s ratio ν of 0.332 is achieved at Mg56Cu21Ag14Y9 BMG, in excess of the previously suggested critical value (ν = 0.31–0.32) for the brittle-to-tough transition in metallic glasses. With the properties of the constituent elements, the predicted values of the bulk modulus B and shear modulus μ of Mg-based BMGs are 8% and 10% greater than the measured value, respectively. Notch toughness KQ of the ten investigated Mg-based BMGs varies between 3.6 and 8.2 MPa√m. Intrinsic brittleness of Mg glass is associated with its tiny plastic zone size (in micrometer scale) and weak resistance to crack propagation. The toughness variations are lack of significant correlation with the ν or μ. Among the investigated alloys, the Mg59.5Cu22.9Ag6.6Gd11 BMG manifests a good combination of improved toughness and high glass-forming ability.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).CrossRefGoogle Scholar
2.Ashby, M. and Greer, A.L.: Metallic glasses as structural materials. Scr. Mater. 54, 321 (2006).Google Scholar
3.Xu, J., Ramamurty, U., and Ma, E.: The fracture toughness of bulk metallic glasses. JOM. 62, 10 (2010).Google Scholar
4.Lewandowski, J.J., Wang, W.H., and Greer, A.L.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005).CrossRefGoogle Scholar
5.Lewandowski, J.J., Gu, X.J., Nouri, A.S., Poon, S.J., and Shiflet, G.J.: Tough Fe-based bulk metallic glasses. Appl. Phys. Lett. 92, 091918 (2008).Google Scholar
6.Jia, P., Zhu, Z.D., Ma, E., and Xu, J.: Notch toughness of Cu-based bulk metallic glasses. Scr. Mater. 61, 137 (2009).CrossRefGoogle Scholar
7.Demetriou, M.D., Kaltenboeck, G., Suh, J.Y., Garrett, G., Floyd, M., Crewdson, C., Hofmann, D.C., Kozachkov, H., Wiest, A., Schramm, J.P., and Johnson, W.L.: Glassy steel optimized for glass-forming ability and toughness. Appl. Phys. Lett. 95, 041907 (2009).Google Scholar
8.Kim, C.P., Suh, J.-Y., Wiest, A., Lind, M.L., Conner, R.D., and Johnson, W.L.: Fracture toughness study of new Zr-based Be-bearing bulk metallic glasses. Scr. Mater. 60, 80 (2009).CrossRefGoogle Scholar
9.He, Q., Cheng, Y.Q., Ma, E., and Xu, J.: Locating bulk metallic glasses with high fracture toughness: Chemical effects and composition optimization. Acta Mater. 59, 202 (2011).CrossRefGoogle Scholar
10.Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).CrossRefGoogle Scholar
11.Zheng, Q., Xu, J., and Ma, E.: High glass-forming ability correlated with fragility of Mg-Cu(Ag)-Gd alloys. J. Appl. Phys. 102, 113519 (2007).CrossRefGoogle Scholar
12.Xi, X.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J.: Fracture of brittle metallic glasses: Brittleness or plasticity. Phys. Rev. Lett. 94, 125510 (2005).Google Scholar
13.Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle ScholarPubMed
14.Cheng, Y.Q., Cao, A.J., and Ma, E.: Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009).CrossRefGoogle Scholar
15.Johnson, W.L. and Samwer, K.: A universal criterion for plastic yielding of metallic glasses with a (T/ T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).CrossRefGoogle Scholar
16.Zhang, L., Cheng, Y.-Q., Cao, A.-J., Xu, J., and Ma, E.: Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 1154 (2009).CrossRefGoogle Scholar
17.Gu, X.J., Mcdermott, A.G., Poon, S.J., and Shiflet, G.J.: Critical Poisson’s ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006).CrossRefGoogle Scholar
18.Gu, X.J., Poon, S.J., Shiflet, G.J., and Lewandowski, J.J.: Compressive plasticity and toughness of a Ti-based bulk metallic glass. Acta Mater. 58, 1708 (2010).CrossRefGoogle Scholar
19.Zhang, Y. and Greer, A.L.: Correlations for predicting plasticity or brittleness of metallic glasses. J. Alloy. Comp. 434435, 2 (2007).Google Scholar
20.Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Achieving exceptional glass-forming ability by substitutional alloying in Mg-Cu-Y: The effects of Ag versus Ni. J. Mater. Res. 21, 2204 (2006).CrossRefGoogle Scholar
21.Zheng, Q., Ma, H., Ma, E., and Xu, J.: Mg–Cu–(Y, Nd) pseudo-ternary bulk metallic glasses: The effects of Nd on glass-forming ability and plasticity. Scr. Mater. 55, 541 (2006).CrossRefGoogle Scholar
22.Zheng, Q., Cheng, S., Strader, J.H., Ma, E., and Xu, J.: Critical size and strength of the best bulk metallic glass former in the Mg−Cu−Gd ternary system. Scr. Mater. 56, 161 (2007).Google Scholar
23.Shi, L.L. and Xu, J.: to be published.Google Scholar
24.Murakami, Y.: Stress Intensity Factors Handbook. Vol. 2 (Pergamon, Oxford, UK, 1987), p. 666.Google Scholar
25.Suh, J.-Y., Conner, R.D., Kim, C.P., Demetriou, M.D., and Johnson, W.L.: Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982 (2010).CrossRefGoogle Scholar
26.Egami, T., Poon, S.J., Zhang, Z., and Keppens, V.: Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys. Rev. B. 76, 024203 (2007).CrossRefGoogle Scholar
27.Gilman, J.J.: Electronic Basis of the Strength of Materials. (Cambridge University Press, UK, 2003), p. 113.Google Scholar
28.Fukuhara, M., Takahashi, M., Kawazoe, Y., and Inoue, A.: Role of valence electrons for formation of glassy alloys. J. Alloy. Comp. 483, 623 (2009).CrossRefGoogle Scholar
29.Jóváril, P., Saksl, K., Pryds, N., Lebech, B., Bailey, N.P., Mellergård, A., Delaplane, R.G., and Franz, H.: Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations. Phys. Rev. B 76, 054208 (2004).CrossRefGoogle Scholar
30.Fukunaga, T., Sugiura, H., Takeichi, N., and Mizutani, U.: Experimental studies of atomic structure, electronic structure, and the electronic transport mechanism in amorphous Al-Cu-Y and Mg-Cu-Y ternary alloys. Phys. Rev. B 54, 3200 (1996).CrossRefGoogle ScholarPubMed
31.Chen, H.S., Krause, J.T., and Coleman, E.: Elastic constants, hardness and their implications to flow properties of metallic glasses. J. Non-cryst. Solids. 18, 157 (1975).Google Scholar
32.Poon, S.J., Zhu, A., and Shiflet, G.J.: Poisson’s ratio and intrinsic plasticity of metallic glasses. Appl. Phys. Lett. 92, 261902 (2008).Google Scholar
33.Johnson, W.L., Demetriou, M.D., Harmon, J.S., Lind, M.L., and Samwer, K.: Rheology and ultrasonic properties of metallic glass-forming liquids: A potential energy landscape perspective. MRS Bull. 32, 644 (2007).Google Scholar
34.Demetriou, M.D., Johnson, W.L., and Samwer, K.: Coarse-grained description of localized inelastic deformation in amorphous metals. Appl. Phys. Lett. 94, 191905 (2009).Google Scholar
35.Castellero, A., Moser, B., Uhlenhaut, D.I., Dalla Torre, F.H., and Löffler, J.F.: Room-temperature creep and structural relaxation of Mg-Cu-Y metallic glasses. Acta Mater. 56, 3777 (2008).CrossRefGoogle Scholar
36.Niikura, A., Tsai, A.P., Inoue, A., and Masumoto, T.: Chemical structural relaxation-induced embrittlement in amorphous Mg-Cu-Y alloys. J. Non-Cryst. Solids 159, 229 (1993).CrossRefGoogle Scholar