Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-10-06T11:15:28.835Z Has data issue: false hasContentIssue false

Metastable supersaturated solutions of nitrogen in rapidly-solidified silicon

Published online by Cambridge University Press:  31 January 2011

H. J. Stein
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P. S. Peercy
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
C. R. Hills
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Get access

Abstract

The depth distribution, chemical bonding, and electrical behavior of N quenched into Si by pulsed laser-induced melting have been investigated by secondary ion mass spectroscopy, infrared (ir) absorption, transmission electron microscopy (TEM), and electrical conductivity. The results demonstrate that laser-induced melting of N-implanted layers provides access to a useful range of otherwise inaccessible conditions for the study of N in Si. Nitrogen concentrations four orders of magnitude above equilibrium solid solubility are retained in implanted layers with limited diffusion during laser-induced melt and rapid solidification. The N is incorporated predominantly as N–N pairs bonded to Si, similar to the bonding configuration for equilibrium concentrations introduced during ingot growth. Formation of SixNy clusters is suggested to explain ir absorption bands, features in TEM, and shallow donor activity observed after furnace annealing near 750 °C. These cluster effects are removed by a melt/solidification sequence which restores the N to N–N pair centers together with a small fraction of off-center substitutional N.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Chiou, H. D.Moody, J.Sandfort, R. and Shimura, F.Electrochem. Soc. Proc, edited by Bean, K. E. and Rozgonyi, G. (The Electrochemical Society, Inc., Pennington, NJ, 1984), Vol. 84-7, p. 59.Google Scholar
2Abe, T.Harada, H.Ozawa, N. and Adomi, K.Mater. Res. Soc. Symp. Proc, edited by Mikkelsen, J. C. Jr., Pearton, S.J., Corbett, J.W. and Pennycook, S.J. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 59, p. 537.Google Scholar
3Hori, T.Iwasaki, H.Naito, Y. and Esaki, H.IEEE Trans. Electron Devices ED 34 2238 (1987).Google Scholar
4Kim, M. J. and Ghezzo, M.J. Electrochem. Soc. 131 1934 (1984).CrossRefGoogle Scholar
5Nesbit, L.Slusser, G.Frenette, R. and Halbach, R.J. Electrochem. Soc. 133 1186 (1986).CrossRefGoogle Scholar
6White, C.W.Mater. Res. Soc. Symp. Proc edited by Appleton, B. R. and Celler, G.K. (Elsevier Sci. Pub. Co., Inc., New York, 1982), Vol. 4, p. 109.Google Scholar
7Yatsurugi, Y.Akiyama, N.Endo, Y. and Nozaki, T.J. Electrochem. Soc. 120 975 (1973).Google Scholar
8Brice, D.K.Radiat. Eff. 11 227 (1971).Google Scholar
9Thompson, M. O. Ph.D. Thesis Cornell University (1984).Google Scholar
10Stein, H.J.J. Electrochem. Soc. 134 2592 (1987).Google Scholar
11SIMS measurements were made by Charles Evans and Associates, Redwood City, CA.Google Scholar
12Denisova, N. V.Zorin, E.I.Pavlov, P. V.Tetel'baum, D.I., and Khokhlov, A.F.Inorg. Mater. 11 1920 (1976).Google Scholar
13Josquin, W. J. M. J.Nucl. Instrum. Methods 209/210 581 (1983).CrossRefGoogle Scholar
14Stein, H. J.Proc. 13th Int. Conf. on Defects in Semiconductors, edited by Kimerling, L. C. and Parsey, J. M. Jr. (TMS-AIME, Warrendale, PA, 1985), p. 839; Mater. Res. Soc. Symp. Proc edited by J. C. Mikkelsen Jr., S.J. Pearton J. W. Corbett and S. J. Pennycook (Materials Research Society, Pittsburgh, PA, 1986), Vol. 59, p. 523.Google Scholar
15Abe, T.Kikuchi, K.Shirai, S. and Muraoka, S.Electrochem. Soc. Proc edited by Huff, H.R. and Kriegler, R. J. (The Electrochemical Society, Inc., Pennington, NJ, 1981), Vol. 81-5, p. 54.Google Scholar
16Itoh, Y.Nozaki, T.Masui, T. and Abe, T.Appl. Phys. Lett. 47 488 (1985).Google Scholar
17Smith, T.P. III , Stiles, P.J.Augustynaik, W.M.Brown, W. L.Jacobson, D.C. and Kant, R.A.Mater. Res. Soc. Symp. Proc edited by Fan, J.C.C. and Johnson, N.M. (Elsevier Sci. Pub. Co., Inc., New York, 1984), Vol. 35, p. 453.Google Scholar
18Murakami, K.Itoh, H.Takita, K. and Musuda, K.Appl. Phys. Lett. 45 176 (1984); H. Itoh K. Murakami K. Takita and K. Musada Proc. of Fifteenth Symp. on Ion Implantation and Submicron Fabrication (Rigaku Kenkyusho, Wako-shi Saitama 351, Japan, 1984), p. 85.Google Scholar
19Stein, H.J.Appl. Phys. Lett. 46 1339 (1985).Google Scholar
20Brower, K. L.Phys. Rev. B26 6040 (1982).Google Scholar
21Lambert, J. A. and Dobson, P. S.Philos. Mag. A44 1043 (1981).Google Scholar
22Reiche, M.Reichel, J. and Nitzsche, W.Phys. Status Solidi A9a 197 851 (1988).Google Scholar
23Loretto, M. H. and Smallman, R. E.Defect Analysis in Electron Microscopy (Chapman and Hall, London, and John Wiley and Sons Inc., New York, 1975).Google Scholar
24Kanamori, A. and Kanamori, M.J. Appl. Phys. 50 8095 (1979).Google Scholar
25Holzlein, K.Penzl, G. and Schulz, M.Appl. Phys. A34 155 (1984).CrossRefGoogle Scholar
26Stein, H. J. and Peercy, P. S.Mater. Res. Soc. Symp. Proc edited by Narayan, J.Brown, W.L. and Lemons, R.A. (Elsevier Sci. Pub. Co., Inc., New York, 1983), Vol. 13, p. 229.Google Scholar