Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T16:58:38.707Z Has data issue: false hasContentIssue false

Metastability of tetragonal ZrO2 derived from Zr-n-propoxide-acetylacetone-water-isopropyl alcohol

Published online by Cambridge University Press:  31 January 2011

Zhaoqi Zhan
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
Hua C. Zeng
Affiliation:
Department of Chemical Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
Get access

Abstract

ZrO2 nanopowders derived from zirconium n-propoxide [Zr(OC3H7)4]-acetylacetone-water-isopropanol have been investigated with respect to their tetragonal metastability on heating-cooling processes. The transformation temperature of metastable tetragonal to monoclinic (t′ → m) phase is found to be governed by ultimate firing temperature, time, and atmospheres employed. Crystallite growth is fastened with increase in calcination temperatures over 1000–1400 °C, and the t′ → m transformation temperature is correlated linearly with crystallite size in the studied range of 12–20 nm. Heating in an oxygen environment increases the size of the final crystallites and hence the rate of the t′ → m transformation. It is revealed that the t′ → m transformation temperature depends largely on the heating atmosphere, but only weakly on the cooling one. Based on the findings of this work, surface oxygen deficiencies are attributed to be responsible for low-temperature tetragonal metastability. A crystallite growth model to explain the decline of t′-ZrO2phase is proposed. Kinetic and thermodynamic factors are also discussed in connection with the existing theories of tetragonal metastability.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mercera, P. D. L., van Ommen, J. G., Doesburg, E. B. M., Burggraaf, A. J., and Ross, J. R. H., Appl. Catal. 57, 127 (1990).CrossRefGoogle Scholar
2.Mercera, P. D. L., van Ommen, J. G., Doesburg, E. B. M., Burggraaf, A. J., and Ross, J. R. H., Appl. Catal. 71, 363 (1991).Google Scholar
3.Song, X. and Sayari, A., Cata. Rev. Sci. Eng. 38, 329 (1996).CrossRefGoogle Scholar
4.Yoshimura, M., Yashima, M., Noma, T., and Sōmiya, S., J. Mater. Sci. 25, 2011 (1990).CrossRefGoogle Scholar
5.Atik, M. and Aegerter, M. A., J. Non-Cryst. Solids 147/148, 813 (1992).Google Scholar
6.Subbarao, E. C., Mati, H. S., and Srivastava, K. K., Phys. Status Solidi A 21, 9 (1974).Google Scholar
7.Garvie, R. C., J. Phys. Chem. 69, 1238 (1965).CrossRefGoogle Scholar
8.Garvie, R. C., J. Phys. Chem. 82, 218 (1978).CrossRefGoogle Scholar
9.Gupta, T. K., in Fracture Mechanisms of Ceramics, Vol. 4, edited by Bradt, R. C., Hasselman, D. P. H., and Lange, F. F. (Plenum Press, New York, 1978), p. 877.Google Scholar
10.Gupta, T. K., Bechtold, J. H., Kuznicki, R. C., Cadoff, L. H., and Rossing, B. R., J. Mater. Sci. 12, 2421 (1977).Google Scholar
11.Heuer, A. H., Claussen, N., Kriven, W. M., and Ruhle, M., J. Am. Ceram. Soc. 65, 642 (1982).CrossRefGoogle Scholar
12.Mitsuhashi, T., Ichihara, M., and Tatsuke, U., J. Am. Ceram. Soc. 57, 97 (1974).Google Scholar
13.Evan, A. G. and Heuer, A. H., J. Am. Ceram. Soc. 63, 241 (1980).CrossRefGoogle Scholar
14.Evan, A. G., Burlingame, N., Drory, M., and Kriven, W. M., Acta Metall. 29, 447 (1981).Google Scholar
15.Babushkin, O., Lindback, T., Warren, R., and Sprumont, M., in Solid-Solid Phase Transformations, Proceedings of the International Conference on Solid-to-Solid Phase Transformation in Inorganic Materials PTM ‘94, edited by Johnson, W. C., Howe, J. M., Laughlin, D. E., and Soffa, W. A. (TMS Press, 1994), p. 743.Google Scholar
16.Srinivasan, R., Hubbard, C. R., Cavin, O. B., and Davis, B. H., Chem. Mater. 5, 27 (1993).CrossRefGoogle Scholar
17.Srinivasan, R., Davis, B. H., Cavin, O. B., and Hubbard, C. R., J. Am. Ceram. Soc. 75, 1217 (1992).Google Scholar
18.Srinivasan, R., Watkins, T. R., Hubbard, C. R., and Davis, B. H., Chem. Mater. 7, 725 (1995).Google Scholar
19.Norman, C. J., Goulding, P. A., and McAlpine, I., Catal. Today 20, 313 (1994).Google Scholar
20.Zeng, H. C. and Shi, S., J. Non-Cryst. Solids 185, 31 (1995).Google Scholar
21.Zeng, H. C., Lin, J., and Tan, K. L., J. Mater. Res. 10, 3096 (1995).CrossRefGoogle Scholar
22.Zeng, H. C. and Qian, M., J. Mater. Chem. 6, 435 (1996).CrossRefGoogle Scholar
23.Guinebretiere, R., Dauger, A., Leocomte, A., and Vesteghem, H., J. Non-Cryst. Solids 147/148, 542 (1992).CrossRefGoogle Scholar
24.Srinivasan, R., Harris, M. B., Simpson, S. F., De Angelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).CrossRefGoogle Scholar
25.Cheetham, A. K. and Day, P., Solid-State Chemistry: Techniques (Clarendon Press, Oxford, 1987), p. 79.Google Scholar
26.Yashima, M., Mitsuhashi, T., Takashina, H., Kakihana, M., Ikegami, T., and Yoshimua, M., J. Am. Ceram. Soc. 78, 2225 (1995).CrossRefGoogle Scholar
27.Urabe, K., Ogata, K., Ikawa, H., and Udagawa, S., Mater. Sci. Forum 34/36, 147 (1988).Google Scholar
28.Collins, D. E., Rogers, K. A., and Bowman, K. J., Euro, J., Ceram. Soc. 15, 1119 (1995).CrossRefGoogle Scholar
29.Zhu, W. Z., Ceram. Int. 22, 389 (1996).Google Scholar
30.Morgan, P. E. D., J. Am. Ceram. Soc. 67, C-204 (1984).Google Scholar
31.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley & Sons, Singapore, 1991), p. 448.Google Scholar
32.Zeng, H. C. and Tung, S. K., Chem. Mater. 8, 2667 (1996).Google Scholar
33.Li, Y. S., Wong, P. C., and Mitchell, K. A. R., Appl. Surf. Sci. 89, 263 (1995).CrossRefGoogle Scholar
34.Clearfield, A., Rev. Pure Appl. Chem. 14, 91 (1964).Google Scholar
35.Osendi, M. I., Moya, J. S., Serna, C. J., and Soria, J., J. Am. Ceram. Soc. 68, 135 (1985).CrossRefGoogle Scholar
36.Claussen, N. and Ruhle, M., in Advances in Ceramics, Vol. 3, edited by Heuer, A. H. and Hobbs, L. W. (Am. Ceram. Soc., Westerville, OH, 1981), p. 137.Google Scholar
37.Murray, P. and Allison, E. B., Trans. Brit. Ceram. Soc. 53, 335 (1954).Google Scholar
38.Withney, E. D., Trans. Farday Soc. 61, 1991 (1965).Google Scholar