Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T08:23:41.607Z Has data issue: false hasContentIssue false

Metallurgical reactions controlling the brazing of Al2O3 with Ag–Cu–Ti filler alloys

Published online by Cambridge University Press:  31 January 2011

M. Paulasto
Affiliation:
Helsinki University of Technology, Department of Materials Science and Engineering, FIN-02150 Espoo, Finland
J. Kivilahti
Affiliation:
Helsinki University of Technology, Department of Materials Science and Engineering, FIN-02150 Espoo, Finland
Get access

Extract

Metallurgical reactions controlling the Ti activation in brazing of Al2O3 have been studied by means of microstructural and thermodynamic analysis. The reactions of titanium with oxygen and copper are shown to be decisive in active brazing. Themiscibility gap in the Ag–Cu–Ti system divides the liquid braze into Ag-rich (L1) and TiCu-rich (L2) liquids. The liquid L2 reacts with alumina forming the mixed oxide (Ti, Al)4Cu2O. Besides with alumina, Ti reacts with oxygen that the filler alloys usually contain and forms a brittle ribbon composed of TixO and Ti–Cu–O phases in the braze. The formation of Ti oxides next to the alumina is possible only in the filler alloys of highest Ag content.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Naidich, Yu, Prog. Surf. Membr. Sci. 14, 353 (1981).CrossRefGoogle Scholar
2.Nicholas, M.G. and Mortimer, D.A., Mater. Sci. Technol. 11, 657 (1985).CrossRefGoogle Scholar
3.Moorhead, A. J., Henson, H.M., and Henson, T. J., in Ceramic Microstructures ‘86, edited by Pask, J.A. and Evans, A.G. (Plenum Press, New York, 1987), p. 949.CrossRefGoogle Scholar
4.Paulasto, M. and Kivilahti, J., Ceram. Trans. 35, 165 (1993).Google Scholar
5.Kivilahti, J. and Heikinheimo, E., in Joining Ceramics, Glass and Metal, edited by Kraft, W. (Verlag der Deutschen Glastechnischen Gesellschaft, Frankfurt/M., Germany, 1989), p. 131.Google Scholar
6.Li, X. L., Hillel, R., Teyssandier, F., Choi, S.K., and van Loo, F. J. J., Acta Metall. Mater. 40, 11 (1992).Google Scholar
7.Kivilahti, J.K. and van Loo, F. J. J., Mater. Sci. Forum 126, 209 (1993).CrossRefGoogle Scholar
8.Paulasto, M., van Loo, F. J. J., and Kivilahti, J.K., J. Alloys Comp. 220, 136 (1995).CrossRefGoogle Scholar
9.Sundman, B., Jansson, B., and Andersson, J.O., Calphad 9, 150 (1985).CrossRefGoogle Scholar
10.Dinsdale, A. T., Calphad 15, 317 (1991).CrossRefGoogle Scholar
11. SGTE Databank for Solutions and Substances, released 1992.Google Scholar
12.Pajunen, M. and Kivilahti, J., Z. Metallk. 83, 17 (1992).Google Scholar
13.Hillert, M. and Staffanson, L. I., Acta Chem. Scand. 24, 3618 (1970).CrossRefGoogle Scholar
14.Redlich, O. and Kister, A., Indust. Eng. Chem. 40, 345 (1948).CrossRefGoogle Scholar
15.Schmid, R., Metall. Trans. 14B, 473 (1983).CrossRefGoogle Scholar
16.Saunders, N., COST 507, Thermodynamic Databank for Light Metal Alloys, released 1991.Google Scholar
17.Spencer, P. J. and Kubaschewski, O., Monatschefte f ür Chemie 118, 155 (1987).CrossRefGoogle Scholar
18.Fromm, E. and Gebhardt, F., Gase und Kohlenstoff in Metallen (Springer-Verlag, Berlin, Germany, 1976), pp. 678684.CrossRefGoogle Scholar
19.Chang, Y.A., Fitzner, K., and Zhang, M-X., Progr. Mater. Sci. 32, 97 (1988).CrossRefGoogle Scholar
20.Kelkar, G. P., Spear, K. E., and Carim, A.H., J.Mater. Res. 9, 2244 (1994).CrossRefGoogle Scholar
21.Byun, W. and Kim, H., Scripta Metall. Mater. 31, 1543 (1994).CrossRefGoogle Scholar
22.Moorhead, A. J. and Kim, Hyoun-Ee, J. Mater. Sci. 26, 4067 (1991).CrossRefGoogle Scholar
23.Chen, J.H., Wang, G. Z., Nogi, K., Kamai, M., Sato, N., and Iwamoto, N., J. Mater. Sci. 28, 2933 (1993).CrossRefGoogle Scholar
24.Carim, A.H., Scripta Metall. Mater. 25, 51 (1991).CrossRefGoogle Scholar
25.Kritsalis, P., Coudurier, L., and Eustathopoulos, N., J. Mater. Sci. 26, 3400 (1991).CrossRefGoogle Scholar
26.Barbier, F., Peytour, C., and Revcolevschi, A., J. Am. Ceram. Soc. 73, 1582 (1990).CrossRefGoogle Scholar
27.Kubaschewski, O., Kubaschewski-von Goldbeck, O., Rogl, P., and Franzen, H. F., in Titanium: Physico-Chemical Properties of Its Compounds and Alloys, special issue No. 9, edited by Komarek, K. L. (Int. Atomic Energy Agency, Vienna, Austria, 1983).Google Scholar
28.van Loo, F. J. J., Prog. Solid State Chem. 20, 47 (1990).CrossRefGoogle Scholar
29.Chidambaram, P.R., Edwards, G.R., and Olson, D. L., Metall. Trans. 25A, 2083 (1994).CrossRefGoogle Scholar