Published online by Cambridge University Press: 31 January 2011
Direct writing of iron lines on glass and Al2O3 has been achieved by CW CO2 laser-driven pyrolytic dissociation of volatile iron pentacarbonyl liquid. Since a very high organometallic molecular density is realized in the solution, use of a liquid precursor has enabled deposition of micron-thick iron films at the writing speeds of 10–400 mm s−1, which are significantly higher as compared to those achievable by the conventional CVD method. The iron stripes deposited on the glass substrate at the laser power density of 5.3 kW cm−2 and the writing speed of 100 mm s−1 are found to have a resistivity of about 580 μohm-cm. These stripes have been found to have an integral bond with the substrate due to the interface reaction.