Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T11:58:32.591Z Has data issue: false hasContentIssue false

Metal site disorder in zinc tin phosphide

Published online by Cambridge University Press:  31 January 2011

M. A. Ryan
Affiliation:
Department of Chemistry, Mount Holyoke College, South Hadley. Massachusetts 01075
Mark W. Peterson
Affiliation:
Photoconversion Branch, Solar Energy Research Institute, 1607 Cole Boulevard, Golden, Colorado 80401
D. L. Williamson
Affiliation:
Department of Physics, Colorado School of Mines, Golden, Colorado 80401
James S. Frey
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Gary E. Maciel
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
B. A. Parkinson*
Affiliation:
E. I. du Pont de Nemours and Co., Central Research and Development Department, Experimental Station E328/216, Wilmington, Delaware 19898
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The optoelectronic properties of the II-IV-V2 semiconductor ZnSnP2 are studied as a function of the cooling rate of the crystal growth melt. The structure of the material, as studied by x-ray diffraction, is seen to change from chalcopyrite to sphalerite as the cooling rate is increased. Photoelectrochemical measurements show that the bandgap of the material decreases from 1.64 eV for the chalcopyrite to 1.25 eV as the structure approaches sphalerite. The 119Sn Mössbauer spectroscopy shows both an isomer shift and a broadening of the 119Sn resonance as a result of new tin environments produced by disordering of zinc and tin sites at the faster cooling rates. The 31P solid-state nuclear magnetic resonance spectroscopy clearly shows new resonances associated with the additional phosphorus environments produced by metal site disordering. A model based on zinc and tin site exchange with the introduction of compensating donor and acceptor states is proposed and discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1(a) Folmer, J. C. W., Tuttle, J. R., Turner, J. A., and Parkinson, B. A., J. Electrochem. Soc. 132, 1608 (1985). (b) J. C. W. Folmer, J. R. Tuttle, D. L. Williamson, J. A. Turner, B. A. Parkinson, S. K. Deb, and D. Cahen, Prog. Cryst. Growth Characterization 10, 321 (1985).CrossRefGoogle Scholar
2(a) Kuan, T. S., Kuech, T. F., Wang, W. I., and Wilkie, E. L., Phys. Rev. Lett. 54, 201 (1985). (b) H. R. Jen, M. J. Cherng, and G. B. Stringfellow, Appl. Phys. Lett. 48, 1603 (1986). (c) G. P. Srivastava, J. L. Martins, and A. Zunger, Phys. Rev. B 31, 2561 (1985).CrossRefGoogle Scholar
3(a) Loshakova, G. V., Plechko, R. L., Vaipolin, A. A., Pavlov, B. V., Valov, Y. A., and Goryunova, N. A., Izv. Akad. Nauk. SSSR, Neor-gan. Mater. 2, 1966 (1966). (b) A. A. Vaipolin, N. A. Goryunova, L. I. Kleshchinskii, G. V. Loshakova, and E. O. Osmanov, Phys. Status Solidi 29, 435 (1968).Google Scholar
4(a) Berkovskii, F. M., Garbuzov, D. Z., Goryunova, N. A., Loshakova, G. V., Ryvkin, S. M., and Shpen'kov, G. P., Sov. Phys. Semiconducto 2 (5), 618 (1968). (b) Yu. V. Rud' and I. A. Mal'tseva, Sov. Phys. Semicond. 11(6), 612 (1977).Google Scholar
5Abdurakhimov, A. A., Kradinova, L. V., Parimbekov, Z. A. and Rud, Yu. V., Sov. Phys. Semicond. 16 (2), 156 (1982).Google Scholar
6Shay, J. L. and Wernick, J. H., Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties and Applications (Permagon, New York, 1975).Google Scholar
7Ryan, M. A., Maciel, G. C., Frye, J., Williamson, D., and Parkinson, B. A., J. Electrochem. Soc. 132, 135 C (1985).Google Scholar
8Wind, R. A., Anthonio, F. E., Duijvestijn, M. J., Smidt, J., Trommel, J., and Vette, G. M. C. de, J. Magn. Reson. 52, 424 (1983).Google Scholar
9Rubenstein, M. and Ure, R. W. Jr., J. Phys. Chem. Solids 29, 551 (1968).CrossRefGoogle Scholar
10Gartner, W. W., Phys. Rev. 116, 84 (1959).CrossRefGoogle Scholar
11Zlatkin, L. B., Ivanov, E. K., and Startsev, G. P., Phys. Status Solidi A 1, 661 (1970).CrossRefGoogle Scholar
12Butler, M. L., J. Appl. Phys. 48, 1914 (1977).CrossRefGoogle Scholar
13Shaukat, A., J. Phys. Chem. Solids 43, 407 (1982).CrossRefGoogle Scholar
14Lee, J. H. and Orvis, W. J., Lawrence Livermore Laboratory Report No. UCID 18041-80, 1980.Google Scholar
15Freeman, R. and Hill, H. D. W., J. Chem. Phys. 54, 3367 (1971).CrossRefGoogle Scholar
16Zlatkin, L. B. and Ivanov, E. K., J. Chem. Phys. Solids 32, 1733 (1971).CrossRefGoogle Scholar
17Folmer, J. C. W. and Franzen, H. F., Phys. Rev. B 29, 6261 (1984).CrossRefGoogle Scholar
18Shannon, R. D., Structure and Bonding in Crystals (Academic, New York, 1981), Vol. 11, p. 53.CrossRefGoogle Scholar
19Vaipolin, A. A., Sov. Phys. Solid State 15, 965 (1973).Google Scholar
20Dragunus, A. K., Kazauskas, A. V., and Makaryunas, K. V., Sov. Phys. JETP 45, 1059 (1977).Google Scholar
21Flinn, P. A., in Mossbauer IsomerShifts, edited by Shenoy, G. K. and Wagner, F. E. (North-Holland, New York, 1978), p. 593.Google Scholar
22The natural (minimum possible) linewidth of the 119Sn Mössbauer resonance is 0.646 mm/s, but the presently available sources yield experimental linewidths that are typically 0.15 mm/s larger. We have calibrated our source by measuring linewidth versus absorber thickness for well-known single-line absorbers and established a minimum possible experimental linewidth of 0.80 ± 0.01 mm/s.Google Scholar
23O'Connor, J. A., Nucl. Instrum. Methods 21, 318 (1963).CrossRefGoogle Scholar
24Williamson, D. L. and Mikkelson, J. C. (unpublished results).Google Scholar
25Bube, R. H., Photoconductivity of Solids (Wiley, New York, 1960).Google Scholar
26(a) Davis, G. A. and Wolfe, C. M., J. Electrochem. Soc. 130, 1408 (1983). (b) G. A. Davis, M. W. Muller, and C. M. Wolfe, J. Crystal Growth 69, 141 (1984).CrossRefGoogle Scholar
27Kasowski, R. V. (work in progress).Google Scholar
28Duncan, T. M., Karlicek, R. F. Jr., Bonner, W. A., and Thiel, F. A., J. Phys. Chem. Solids 45, 389 (1984).CrossRefGoogle Scholar