Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T21:57:56.287Z Has data issue: false hasContentIssue false

Melt-textured YBaCuO with High Trapped Fields up to 1.3 T at 77 K

Published online by Cambridge University Press:  31 January 2011

H. Walter
Affiliation:
Zentrum für Funktionwerkstoffe Göttingen GmbH, Windausweg 2, 37073 Göttingen, Germany
M. P. Delamare
Affiliation:
Institut für Materialphysik, Universität Göttinger, Hospitalstrasse 3-7, 37073 Göttingen, Germany
B. Bringmann
Affiliation:
Institut für Materialphysik, Universität Göttinger, Hospitalstrasse 3-7, 37073 Göttingen, Germany
A. Leenders
Affiliation:
Zentrum für Funktionwerkstoffe Göttingen GmbH, Windausweg 2, 37073 Göttingen, Germany, and Institut für Materialphysik, Universität Göttingen, Hospitalstrasse 3-7, 37073 Göttingen, Germany
H. C. Freyhardt
Affiliation:
Zentrum für Funktionwerkstoffe Göttingen GmbH, Windausweg 2, 37073 Göttingen, Germany, and Institut für Materialphysik, Universität Göttingen, Hospitalstrasse 3-7, 37073 Göttingen, Germany
Get access

Abstract

CeO2-doped YBaCuO monoliths synthesized with a top-seeded melt growth process in a conventional box furnace exhibited values of trapped magnetic field of up to 1.33 T at 77 K. To our knowledge, this is the highest value of trapped field reported for a melt-textured YBaCuO monolith. A suitable temperature profile and the use of high-density Y2BaCuO5 substrates led to reproducible single-domain crack-free samples investigated by optical and scanning electron microscopy and trapped field measurements. The zero-field-cooled levitation forces at 77 K of standard samples amounted to 70–83 N. A transport critical current density of up to 1.3 × 105 A/cm2 in self field at 77 K was obtained.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hull, J.R., Mulcahy, T.M., Uherka, K.L., and Abboud, R.G., IEEE Trans. Appl. Supercond. 5, 626 (1995).CrossRefGoogle Scholar
2.Bornemann, H.J., Tonoli, A., Ritter, T., Urban, C., Zaitser, O., and Rietschel, H., IEEE Trans. Appl. Supercond. 5, 618 (1995).CrossRefGoogle Scholar
3.Straβer, T., Habisreuther, T., Gawaleck, W., Wu, M., Litzendorf, D., Görnert, P., Iljushin, K.V., and Kovaljov, L.K., Inst. Phys. Conf. Ser. 148, 687 (1995).Google Scholar
4.Murakami, M., Sup. Sci. Tech. 5, 185 (1992).CrossRefGoogle Scholar
5.Diko, P., Mat. Sci. Eng. B 53, 149 (1989).CrossRefGoogle Scholar
6.Ullrich, M., Walter, H., Leenders, A., and Freyhardt, H.C., Physica C 311, 86 (1999).CrossRefGoogle Scholar
7.Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Introduction to Ceramics, 2nd ed. (Wiley-Interscience), p. 523.Google Scholar
8.Krabbes, G., Schätzle, P., Bieger, W., Wiesner, U., Stöver, G., Wu, M., Strasser, T., Köhler, A., Litzkendorf, D., Fischer, K., and Görnert, P., Physica C 244, 145 (1995).CrossRefGoogle Scholar
9.Lo, W. and Cardwell, D.A., Mater. Sci. Eng. B 53, 45 (1998).CrossRefGoogle Scholar
10.Krabbes, G., Bieger, W., Schätzle, P., and Wiesner, U., Current Topics in Crystal Growth Res. 2, 359 (1995).Google Scholar
11.Kozlowski, G., Varanasi, C., Maartense, I., and Oberly, C.E., Physica C 276, 197 (1997).CrossRefGoogle Scholar
12.Fuchs, G., Krabbes, G., and Schätzle, P., Appl. Phys. Lett. 70, 117 (1997).CrossRefGoogle Scholar
13.Weinstein, R., Sawh, R., Ren, Y., and Parks, D., J. Mat. Sci. Eng. B 53, 38 (1998).CrossRefGoogle Scholar
14.Yeung, S., Banerjee, A., Fultz, J., and McGinn, P.J., Mater. Sci. Eng. B 53, 91 (1998).CrossRefGoogle Scholar
15.Delamare, M.P., Hervieu, M., Wang, J., Provost, J., Monot, I., Verbist, K., and Van Tendeloo, G., Physica C 262, 220 (1996).CrossRefGoogle Scholar
16.Kim, C-J., Kim, K-B., and Hong, G-W., Physica C 232, 163 (1994).CrossRefGoogle Scholar
17.Delamare, M.P., Walter, H., Bringmann, B., Leenders, A., and Freyhardt, H.C., Physica C 323, 107 (1999).CrossRefGoogle Scholar