Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T10:03:31.603Z Has data issue: false hasContentIssue false

Melt-spin processing of YBa2Cu3O7−x

Published online by Cambridge University Press:  31 January 2011

T.J. Folkerts
Affiliation:
Institute for Physical Research and Technology, Iowa State University, Ames, Iowa 50010
M.J. Kramer
Affiliation:
Department of Geological and Atmospheric Sciences and Institute for Physical Research and Technology, Iowa State University, Ames, Iowa 50010
K.W. Dennis
Affiliation:
Ames Laboratory, Iowa State University, Ames, Iowa 50010
R.W. McCallum
Affiliation:
Department of Materials Science and Engineering and Institute for Physical Research and Technology, Iowa State University, Ames, Iowa 50010
Get access

Abstract

We introduce a novel containerless melt-spin processing technique for YBa2Cu3O7−x using prereacted oxide powders that are rapidly melted and subsequentially quenched in a controlled atmosphere. This results in flakes with typical dimensions of 3000 × 150 × 15 μm3. Powder XRD indicates that all samples contain Y2O3, but that the Ba–Cu–O phases present depend on the processing parameters. SEM and TEM studies show these phases are finely dispersed: the typical grain size for Y2O3 is 1–2 μm, and for the Ba–Cu–O phases it is <0.5 μm.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W., Zaluzec, N. J., Flandermeyer, B., deLima, D. F., Hong, M., Kwo, J., and Liou, S. H., J. Appl. Phys. 62, 4821 (1987).CrossRefGoogle Scholar
2.Jin, S., Sherwood, R. C., Tiefel, T. H., van Dover, R. B., Johnson, D. W., and Grader, G. S., Appl. Phys. Lett. 51, 855 (1987).CrossRefGoogle Scholar
3.Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sandstrom, R. L., Phys. Rev. Lett. 58, 2687 (1987).CrossRefGoogle Scholar
4.Oh, B., Naito, M., Arnason, S., Rosenthat, P., Barton, R., Beasley, M. R., Geballe, T. H., Hammond, R. H., and Kapitulnik, A., Appl. Phys. Lett. 51, 852 (1987).CrossRefGoogle Scholar
5.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
6.Morita, M., Miyamoto, K., Doi, K., Murakami, M.Sawano, K., and Matsuda, S., Physica C 172, 383 (1990).CrossRefGoogle Scholar
7.Pinkerton, F. E., Meisner, G. P., and Fuerst, C. D., Appl. Phys. Lett. 53, 428 (1988).CrossRefGoogle Scholar
8.CRC Handbook of Chemistry and Physics, edited by Weast, R. W. (CRC Press, Boca Raton, FL, 1981).Google Scholar
9.CRC Handbook of Chemistry and Physics, edited by Weast, R. W. (CRC Press, Boca Raton, FL, 1981).Google Scholar
10.McCallum, R. W., Ullman, J. E., Kramer, M. J., Chumbley, L. S., and Verhoeven, J. D., Phase Equilibrium and Processing of Re1Ba2Cu3O7x, (TMS, Warrendale, PA, 1989), p. 515.Google Scholar
11.Lay, K. L. and Renlund, G. M., J. Am. Ceram. Soc. 73, 1208 (1990).CrossRefGoogle Scholar