Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-12T17:10:28.039Z Has data issue: false hasContentIssue false

Mechanochemically synthesized NbC cermets: Part II. Mechanical properties

Published online by Cambridge University Press:  31 January 2011

B. R. Murphy
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, Michigan 49931
T. H. Courtney
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, Houghton, Michigan 49931
Get access

Abstract

The mechanical behavior of mechanochemically synthesized NbC cermets was investigated. Material hardnesses range from a high of 19.6 GPa for as-synthesized cermets containing about 4 vol% of Fe to a low of about 4 GPa for heat-treated cermets containing about 34 vol% Cu. Higher hardness generally correlates with lower fracture toughness (about 2 MPa m1/2 for cermets containing the highest percentage of NbC) and vice versa. Highest fracture toughness (about 7.5 MPa m1/2) is found in NbC–18 vol% Fe cermets heat treated extensively following consolidation. Abnormally low fracture toughnesses are found in high-Cu-content cermets in which Cu segregation takes place during heat treatment. Current models of ceramic toughening can be applied to describe the fracture behavior of NbC–Fe cermets.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murphy, B.R. and Courtney, T.H., J. Mater. Res. 14, 4274 (1999).CrossRefGoogle Scholar
2.Lawn, B.R. and Swain, M.V., J. Mater. Sci. 10, 113 (1975).CrossRefGoogle Scholar
3.Lawn, B.R. and Fuller, E.R., J. Mater. Sci. 10, 2016 (1975).CrossRefGoogle Scholar
4.Lawn, B.R., Evans, A.G., and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).Google Scholar
5.Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshall, D.B., J. Am. Ceram. Soc. 64, 533 (1981).CrossRefGoogle Scholar
6.Farquhar, D.S., Phoenix, S.L., and Raj, R., Acta Metall. Mater. 42, 65 (1994).CrossRefGoogle Scholar
7.1990 Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1984), pp. 480504.Google Scholar
8.Brown, W.F., and Srawley, J.E., ASTM STP 401 (ASTM, Baltimore, MD, 1967), p. 1.Google Scholar
9.Ewart, L. and Suresh, S., J. Mater. Sci. Lett. 5, 774 (1986).CrossRefGoogle Scholar
10.Ewart, L. and Suresh, S., J. Mater. Sci. 22, 1173 (1986).CrossRefGoogle Scholar
11.Pickens, J.R. and Gurland, J., Mater. Sci. Eng. 33, 135 (1978).Google Scholar
12.Chermant, J.L., Deschanvres, A., and Lost, A., Fracture Mechanics of Ceramics (Plenum Press, New York, 1973), p. 347.Google Scholar
13.Chermant, J.L. and Osterstock, F., J. Mater. Sci. 11, 1939 (1976).CrossRefGoogle Scholar
14.Kenny, P., Powder Metal. 14, 22 (1971).CrossRefGoogle Scholar
15.Inglestrom, N. and Nordberg, H., Eng. Fract. Mech. 6, 597 (1974).Google Scholar
16.Sigl, L.S., Mataga, P.A., Dalgleish, B.J., McMeeking, R.M., and Evans, A.G., Acta Metall. 36, 1945 (1988).Google Scholar
17.Flinn, B.D., Ruhle, M., and Evans, A.G., Acta Metall. 37, 3001 (1989).Google Scholar
18.Evans, A.G. and McMeeking, R.M., Acta Metall. 34, 2435 (1986).CrossRefGoogle Scholar
19.Mataga, P.A., Acta Metall. 37, 3349 (1989).CrossRefGoogle Scholar
20.Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).Google Scholar
21.Vikinis, G., Beaumont, P.W.R, and Ashby, M.F., Acta Metall. Mater. 38, 1151 (1990).Google Scholar
22.Ashby, M.F., Blunt, F.J., and Bannister, M., Acta Metall. 37, 1847 (1989).Google Scholar
23.Cao, H.C., Dalgleish, B.J., Deve, H.E., Elliott, C., Evans, A.G., Mehrabian, R., and Odette, G.R., Acta Metal. 37, 2969 (1989).CrossRefGoogle Scholar
24.Pickard, S.M., Manor, E., Ni, H., Evans, A.G., and Mehrabian, R., Acta Metal. Mater. 40, 177 (1992).CrossRefGoogle Scholar
25.ASM Engineered Materials Reference Book, 2nd ed. (ASM International, Materials Park, OH, 1994).Google Scholar
26.Shaffer, T.B., Plenum Press Handbooks of High-Temperature Materials, No. 1: Materials Index (Plenum Press, New York, 1964).Google Scholar
27.Samsonov, G.V., Plenum Press Handbooks of High-Temperature Materials, No. 2: Properties Index (Plenum Press, New York, 1964).Google Scholar
28.Courtney, T.H., Mechanical Behavior of Materials (McGraw-Hill, New York, 1990).Google Scholar
29.Metals Handbook, 9th ed. (ASM, Metals Park, OH, 1980), Vol. 3.Google Scholar