Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-24T13:10:44.076Z Has data issue: false hasContentIssue false

Mechanisms of orientation and graphitization of hard-carbon matrices in carbon/carbon composites

Published online by Cambridge University Press:  31 January 2011

Gerald S. Rellick
Affiliation:
Mechanics and Materials Technology Center, The Aerospace Corporation, El Segundo, California 90245-4691
Dick J. Chang
Affiliation:
Mechanics and Materials Technology Center, The Aerospace Corporation, El Segundo, California 90245-4691
Rafael J. Zaldivar
Affiliation:
Mechanics and Materials Technology Center, The Aerospace Corporation, El Segundo, California 90245-4691
Get access

Abstract

It now appears generally accepted that the process of stress-induced orientation and graphitization of a thermoset-resin-derived matrix in a carbon-fiber/carbon-matrix (C/C) composite is principally a result of molecular orientation induced during the pyrolysis process as a consequence of the restraint of pyrolysis shrinkage at the fiber/matrix interface by attractive or frictional forces between fiber and matrix. We hypothesize that the critical factor for the formation of lamellar graphite (by subsequent high-temperature heat treatment), instead of fibrillar or isotropic glassy carbon, is a state of multiaxial deformation in the pyrolysis step. Finite-element stress analyses of the relative stresses in the regions of interfilament matrix, as the matrix pyrolyzes from polymer to carbon, reveal patterns of biaxial and triaxial stress consistent with experimental observations of lamellar graphite formation in the matrix by the techniques of optical microscopy, scanning electron microscopy, and transmission electron microscopy. The implications of localized matrix orientation and graphitization for C/C composite properties are discussed in terms of a “duplex” system of composite reinforcement. An example is presented showing crack deflection and blunting at the matrix/matrix-sheath interface produced as a result of such orientation and graphitization.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Fischbach, D. B., in Chemistry and Physics of Carbon, edited by Walker, P. L. Jr., (Marcel Dekker, New York, 1971), Vol. 7, pp. 1105.Google Scholar
2Reiswig, R. D., Levinson, L. S., and O'Rourke, J. A., Carbon 6, 142 (1968).Google Scholar
3Hishiyama, Y., Inagaki, M., Kimura, S., and Yamada, S., Carbon 12, 249 (1974).CrossRefGoogle Scholar
4Tanaka, H., Kaburagi, Y., and Kimura, S., J. Mater. Sci. 13, 2555 (1978).CrossRefGoogle Scholar
5Hawthorne, H. M., J. Mater. Sci. 11, 97 (1976).CrossRefGoogle Scholar
6Morley, J.G., (a) Proc. R. Soc. London A319, 117 (1970), and (b) Composites, 80 (June 1971).Google Scholar
7Inagaki, M., Oberlin, A., and Fonton, S. de, High Temp.-High Press. 9, 453 (1977).Google Scholar
8Noda, T., Carbon 6, 125 L (1968).Google Scholar
9Zaldivar, R.J. and Rellick, G.S., Carbon 29, 1155 (1991).Google Scholar
10Ozbek, S., Jenkins, G. M., and Isaac, D. H., Ext. Abstr., 20th Carbon Conf. (1991), p. 308.Google Scholar
11Kotlensky, W.V. and Martens, H.E., Nature 206, 1246 (1965).CrossRefGoogle Scholar
12Fourdeux, A., Perret, R., and Ruland, W., Compt. Rend. 271C, 1495 (1970).Google Scholar
13Chard, W. C., Reiswig, R.D., Levinson, L.S., and Baker, T.D., Carbon 6, 950 (1968).CrossRefGoogle Scholar
14Kyotani, T., Sonobe, N., and Tomita, A., Nature 331, 331 (1988).CrossRefGoogle Scholar
15Sonobe, N., Kyotani, T., and Tomita, A., (a) Carbon 26, 573 (1988), (b) Carbon 28, 483 (1990), and (c) Carbon 29, 61 (1991).CrossRefGoogle Scholar
16Hishiyama, Y., Yasuda, S., Yoshida, A., and Inagaki, M., J. Mater. Sci. 23, 3272 (1988).CrossRefGoogle Scholar
17Hatori, H., Yamada, Y., Shiraishi, M., and Takahashi, Y., Carbon 29, 679 (1991).CrossRefGoogle Scholar
18Inagaki, M., Sakomoto, K., and Hishiyama, Y., J. Mater. Res. 6, 1108 (1991).CrossRefGoogle Scholar
19Kimura, S., Tanabe, Y., Takase, N., and Yasuda, E., J. Chem. Soc. Jpn. 9, 1474 (1981).Google Scholar
20Zaldivar, R.J., Kobayashi, R., Rellick, G.S., and Yang, J.M., Carbon 29, 1145 (1991).Google Scholar
21Zaldivar, R.J., Rellick, G.S., and Yang, J.M., SAMPE J. 27, 29 (Sept./Oct. 1991).Google Scholar
22Jenkins, G. M., Kawamura, K., and Ban, L. L., Proc. R. Soc. London A327, 501 (1972).Google Scholar
23Jenkins, G. M. and Kawamura, K., Polymeric Carbons (Cambridge Univ. Press, 1976).Google Scholar
24Rellick, G. S. and Adams, P. M., results to be published.Google Scholar
25Zimmer, J. E. and White, J. L., in Advances in Liquid Crystals, edited by Brown, G. H. (Academic Press, New York, 1982), Vol. 5, p. 157.Google Scholar
26White, J. L., Progress in Solid Stale Chemistry, edited by McCauldin, J. O. and Somarjai, G. (Pergamon Press, 1975), Vol. 9, p. 59.Google Scholar
27White, J. L., Petroleum-Derived Carbons, edited by O'Grady, T. M. and Deviney, M.I. (Am. Chem. Soc. Symp. Ser., 1976), Vol. 21 , p. 282.CrossRefGoogle Scholar
28Rellick, G.S., Chang, D.J., and Zaldivar, R.J., Ext. Abstr., 20th Biennial Conf. on Carbon (1991), p. 404.Google Scholar
29Koufopoulos, T. and Theocaris, P.S., J. Compos. Mater. 3, 308 (1969).CrossRefGoogle Scholar
30Fitzer, F. and Burger, A., in Carbon Fibers: Their Composites and Applications (The Plastics Inst., London, 1971), p. 134.Google Scholar
31Lander, L. L., Atkinson, J., and Theberge, C. C., AIA A Proc. 1, 183 (1969).Google Scholar
32Buch, J. D., Zehms, E., and Rossi, R., Thermomechanical Properties of a Graphite-Phenolic Composite, TR-0066(5124-70)-l (The Aerospace Corporation, El Segundo, CA, 15 June 1970).Google Scholar
33Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L., and Goldberg, H. A., Graphite Fibers and Filaments (Springer-Verlag, Berlin, 1988).CrossRefGoogle Scholar
34Jortner, J., in Proc. Army Symp. on Solid Mechanics, AMMRC MS 76-2 (1976), pp. 8197.Google Scholar
35Jortner, J., “Shrinkage of Polymeric-Matrix Composites During Carbonization,” presented to 1991 JANNAF RNTS Meeting, Hunstville, AL, November 1991.Google Scholar
36Cook, J. and Gordon, J. E., Proc. R. Soc. London A282, 508 (1964).Google Scholar
37Zaldivar, R.J., Rellick, G.S., and Yang, J.M., results to be published.Google Scholar