Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:12:24.202Z Has data issue: false hasContentIssue false

Mechanisms for crystallographic orientation in the crystallization of thin silicon films from the melt

Published online by Cambridge University Press:  31 January 2011

Harry A. Atwater
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Carl V. Thompson
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Henry I. Smith
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Get access

Abstract

The dependence of the growth velocity on crystal orientation has been studied during crystallization of thin polycrystalline silicon films from the melt. Two types of growth velocity anisotropy have been observed. In the first, competitive growth between (100) textured seeds and seeds with (110) and (111) textures indicates that the relative growth velocities are ν(100) > ν(110)ν(111). It is postulated that this textural growth velocity anisotropy is a result of the differences in the interal energy of grains with different textures. This assumption, combined with the data, yields estimates of the interfacial energy anisotropy for the Si–SiO2 interface: γ(111) − γ(100) = 0.069 J/m2 and γ(110) − γ(100) = 0.012 J/m2. Another type of growth velocity anisotropy is responsible for the development of in-plane orientation in competitive growth between (100)-textured seeds. Simple models, which describe development of these two types of crystallographic orientation via anisotropies in growth velocity, agree well with the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Geis, M. W., Smith, H. I., Tsaur, B-Y., and Fan, J. C. C., Appl. Phys. Lett. 40, 158 (1982).CrossRefGoogle Scholar
2Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., J. Electrochem. Soc. 129, 2812 (1982).CrossRefGoogle Scholar
3Maby, E. W., Geis, M. W., LeCoz, Y. L., Silversmith, D. J., Mountain, R. W., and Antoniadis, D. A., Electron Dev. Lett. EDL-2, 241 (1981).CrossRefGoogle Scholar
4Limanov, A. B. and Givargizov, E. I., Mater. Lett. 2, 93 (1983).CrossRefGoogle Scholar
5Haond, M., Dutartre, D., and Bensahel, D., in Energy Beam-Solid Interactions and Transient Thermal Processing, edited by Nguyen, V. T. and Cullis, A. T. (Editionsde Physique, Paris, 1985), p. 417.Google Scholar
6Im, J. S., Tomita, H., and Thompson, C. V., Appl. Phys. Lett. 51, 685 (1987); J. S. Im, C. K. Chen, C. V. Thompson, M. W. Geis, and H. Tomita, to be published in Silicon on Insulator and Buried Metals in Semiconductors, Mater. Res. Soc. Symp. Proc. (Materials Research Society, Pittsburgh, PA, 1988).CrossRefGoogle Scholar
7Pfeiffer, L., Gelman, A. E., Jackson, K. A., West, K. W., and Batstone, J. L., Appl. Phys. Lett. 51, 1256 (1987).CrossRefGoogle Scholar
8Geis, M. W., Smith, H. I., and Chen, C. K., J. Appl. Phys. 60, 1152 (1986).CrossRefGoogle Scholar
9In this paper, texture refers to crystallographic planes parallel to the plane of the film, and not in the plane of the film. This is termed “restricted fiber texture” by some workers.Google Scholar
10Atwater, H. A., Smith, H. I., Thompson, C. V., and Geis, M. W., Mater. Lett. 2, 269 (1984).CrossRefGoogle Scholar
11Hawkins, W.G. and Biegelsen, D. K., Appl. Phys. Lett. 42, 358 (1983).CrossRefGoogle Scholar
12Geis, M. W., Smith, H. I., Silversmith, D. J., Mountain, R. W., and Thompson, C.V., J. Electrochem. Soc. 130, 1178 (1983).CrossRefGoogle Scholar
13Bezjian, K. A., Smith, H. I., Carter, J. M., and Geis, M. W., J. Electrochem. Soc. 129, 1848 (1982).CrossRefGoogle Scholar
14Wilson, H. A., Philos. Mag. 50, 238 (1900).CrossRefGoogle Scholar
15Frenkel, J., Phys. Z. Sovjetunion 1, 498 (1932).Google Scholar
16Hillig, W. B. and Turnbull, D., J. Chem. Phys. 24, 914 (1956).CrossRefGoogle Scholar
17Smith, H. I., Thompson, C. V., Geis, M. W., Lemons, R. A., and Bosch, M. A., J. Electrochem. Soc. 130, 2050 (1983).CrossRefGoogle Scholar
18Jaccodine, R. J., J. Electrochem. Soc. 110, 524 (1963).CrossRefGoogle Scholar
19Wolff, G. A., J. Electrochem. Soc. 110, 1293 (1963).CrossRefGoogle Scholar
20Szilagyi, A., Ph. D. thesis, Massachusetts Institute of Technology, 1984.Google Scholar
21Atwater, H. A., Thompson, C. V., and Smith, H. I., Appl. Phys. Lett. 43, 1126 (1983).CrossRefGoogle Scholar