Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T01:40:27.508Z Has data issue: false hasContentIssue false

Mechanism of the interfacial reaction between cation-deficient La0.56Li0.33TiO3 and metallic lithium at room temperature

Published online by Cambridge University Press:  31 January 2011

Kai-Yun Yang*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Ing-Chi Leu
Affiliation:
Department of Materials Science and Engineering, National United University, Kung-Ching Li, Miao-Li 360, Taiwan
Kuan-Zong Fung
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Min-Hsiung Hon
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Ming-Chi Hsu
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Yu-Jen Hsiao
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Moo-Chin Wang
Affiliation:
Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We used x-ray diffractometry (XRD), x-ray photoelectron spectrometry (XPS), and secondary-ion mass spectrometry (SIMS) to investigate the mechanism of the interfacial room-temperature (RT) chemical reaction between cation-deficient La0.56Li0.33TiO3 solid electrolytes and metallic lithium anodes in all-solid-state lithium batteries. A stoichiometric mixture of La2O3, Li2CO3, and TiO2 powders was calcined at 1250 °C for 8 h to obtain a single perovskite structure of La0.56Li0.33TiO3. When this La0.56Li0.33TiO3 sample and lithium were placed in contact at room temperature for 24 h, the phase of the La0.56Li0.33TiO3 remained unchanged. The XPS results indicate that 12% of the tetravalent Ti4+ ions were converted into trivalent Ti3+ ions. The valence conversion and degree of conversion were limited by the structural rigidity of the host crystal. Our SIMS analysis suggests the existence of a local electric field near the contact surface and indicates that the 6Li+ isotope ions were inserted into the specimen through the effect of this field. The change in the electrical properties of La0.56Li0.33TiO3 supports this mechanism for the interfacial reaction. The ionic conductivities of the grain and total grain boundary decreased and increased, respectively, after the insertion of Li+, and the total electronic conductivity increased as a result of the presence of intervalence electron hopping between mixed Ti3+/Ti4+ states. The mechanism of the lithium-activated RT interfacial reaction is associated with the reduction of Ti4+ transition metal ions from tetravalent to trivalent states and the local-electric-field-induced Li+ insertion into La3+/Li+-site vacancies of La0.56Li0.33TiO3.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Latie, L., Villeneuve, G., Conte, D.Flem, G.L.: Ionic conductivity of oxides with general formula LixLn1/3Nb1−xTixO3 (Ln = La, Nd). J. Solid State Chem. 51, 293 1984CrossRefGoogle Scholar
2Belous, A.G., Novitskaya, G.N., Polyanetskaya, S.V.Gornikov, Yu.I.: Study of complex oxides with the composition La2/3−xLi3xTiO3. Inorg. Mater. 23, 412 1987Google Scholar
3Stramare, S., Thangadurai, V.Weppner, W.: Lithium lanthanum titanates: A review. Chem. Mater. 15, 3974 2003CrossRefGoogle Scholar
4Inaguma, Y., Liquan, C., Itoh, M., Nakamura, T., Uchida, T., Ikuta, H.Wakihara, M.: High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689 1993CrossRefGoogle Scholar
5Belous, A.G., Gavrilenko, O.N., Pashkova, E.V.Mirnyi, V.N.: Lithium-cation conduction and crystallochemical features of solid solutions La2/3−xLi3x◽4/3−2xNb2O6 with the structure of fault perovskite. Russ. J. Electrochem. 38, 425 2002CrossRefGoogle Scholar
6Nakayama, M., Ikuta, H., Uchimoto, Y.Wakihara, M.: Ionic conduction of lithium in B-site substituted perovskite compounds, (Li0.1La0.3)yMxNb1−xO3 (M = Zr, Ti, Ta). J. Mater. Chem. 12, 1500 2002CrossRefGoogle Scholar
7Sun, C.Y.Fung, K.Z.: Effect of Li addition on crystal structure and phase separation of highly defective (La,Li)TaO3 solid electrolytes. Solid State Commun. 123, 431 2002CrossRefGoogle Scholar
8Mizumoto, K.Hayashi, S.: Lithium ion conduction in A-site deficient perovskites R1/4L1/4TaO3 (R = La, Nd, Sm and Y). Solid State Ionics 116, 263 1999CrossRefGoogle Scholar
9Zhuang, G., Wang, K., Ross, P.N. Jr.: XPS characterization of the reactions of Li with tetrahydrofuran and propylene carbonate. Surf. Sci. 387, 199 1997CrossRefGoogle Scholar
10Hellstrom, E.E.Van Gool, W.: Constraints for the selection of lithium solid electrolytes. Rev. Chim. Miner. 17, 263 1980Google Scholar
11Chen, C.H.Amine, K.: Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate. Solid State Ionics 144, 51 2001CrossRefGoogle Scholar
12Wang, C., Patil, P., Appleby, A.J., Little, F.E., Kesmez, M.Cocke, D.L.: In situ ionic/electronic conductivity measurement of La0.55Li0.35TiO3 ceramic at different Li insertion levels. J. Eletrochem. Soc. 151, A1196 2004CrossRefGoogle Scholar
13Nakayama, M., Usui, T., Uchimoto, Y., Wakihara, M.Yamamoto, M.: Changes in electronic structure upon lithium insertion into the A-site deficient perovskite type oxides (Li,Li)TiO3. J. Phys. Chem. B 109, 4135 2005CrossRefGoogle Scholar
14Itoh, M., Inaguma, Y., Jung, W.H., Chen, L.Nakamura, T.: High lithium ion conductivity in the perovskite-type compounds Ln1/2Li1/2TiO3(Ln = La, Pr, Nd, Sm). Solid State Ionics 70–71, 203 1994CrossRefGoogle Scholar
15Robertson, A.D., Martin, S. Garcia, Coats, A.West, A.R.: Phase diagrams and crystal chemistry in the Li+ ion conducting perovskites, Li0.5−3xRE0.5+xTiO3: RE = La, Nd. J. Mater. Chem. 5, 1405 1995CrossRefGoogle Scholar
16Hirakoso, Y., Harada, Y., Kuwano, J., Saito, Y., Ishikawa, Y.Eguchi, T.: Lithium ion conduction in the ordered and disordered phases of A-site deficient perovskite La0.56−xLi3x◽1/3−2xTiO3. Key Eng. Mater. 169−170, 209 1999CrossRefGoogle Scholar
17Fourquet, J.L., Duroy, H.Crosnier-Lopez, M.P.: Structural and microstructural studies of the series La2/3−xLi3x◽1/3−2xTiO3. J. Solid State Chem. 127, 283 1996CrossRefGoogle Scholar
18Bhuvanesh, N.S.P., Bohnké, O., Duroy, H., Crosnier-Lopez, M.P., Emery, J.Fourquet, J.L.: Topotactic H+/Li+ ion exchange on La2/3−xLi3xTiO3: New metastable perovskite phases La2/3−xTiO3−3x(OH)3x and La2/3−xTiO3−3x/2 obtained by further dehydration. Mater. Res. Bull. 33, 1681 1998CrossRefGoogle Scholar
19Abe, M.Uchino, K.: X-ray study of the deficient perovskite La2/3TiO3. Mater. Res. Bull. 9, 147 1974CrossRefGoogle Scholar
20Inaguma, Y., Sohn, J.H., Kim, I.S., Itoh, M.Nakamura, T.: Quantum paraelectricity in a perovskite La1/2Na1/2TiO3. J. Phys. Soc. Jpn. 61, 3831 1992CrossRefGoogle Scholar
21Anderson, M.T., Greenwood, K.B., Taylor, G.A.Poeppelmeier, K.R.: B-cation arrangements in double perovskites. Prog. Solid State Chem. 22, 197 1993CrossRefGoogle Scholar
22Miao, J.P., Li, L.P., Liu, H.J., Xu, D.P., Lu, Z., Song, Y.B., Su, W.H.Zheng, Y.G.: Structure characteristics and valance state study for La1−xNaxTiO3 synthesized under high-pressure and high-temperature conditions. Mater. Lett. 42, 1 2000CrossRefGoogle Scholar
23Wertheim, G.K., Cohen, R.L., Rosencwaig, A.Guggenheim, J.H.: Electron Spectroscopy North-Holland Amsterdam 1972Google Scholar
24Lam, D.L., Veal, B.W.Ellis, D.E.: Electronic structure of lanthanum perovskites with 3d transition elements. Phys. Rev. B 22, 5730 1980CrossRefGoogle Scholar
25Rao, C.N.R.Sarma, D.D.: Study of electron states of solids by techniques of electron spectroscopy. J. Solid State Chem. 45, 14 1982CrossRefGoogle Scholar
26Guillemot, F., Porté, M.C., Labrugère, C.Baquey, Ch.: Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: Interest for titanium biomedical applications. J. Colloid Interface Sci. 255, 75 2002CrossRefGoogle ScholarPubMed
27Wang, L.Q., Baer, D.R.Engelhard, M.H.: Creation of variable concentrations of defects on TiO2(110) using low-density electron beams. Surf. Sci. 320, 295 1994CrossRefGoogle Scholar
28Goldschmidt, V.M.: Skrifter Norske Videnskaps Akad. Oslo, I. Mat.-Nat. Kl. 8 1926Google Scholar
29Muller, O.Roy, R.: The Major Ternary Structural Families Springer-Verlag New York 1974CrossRefGoogle Scholar
30Lide, D.R.: CRC Handbook of Chemistry and Physics 85th ed.CRC Press New York 2004Google Scholar
31Jonsson, P.A.: Deconvolution of Images and Spectra Academic Press New York 1997Google Scholar
32Sinclair, D.C., Skakle, J.M.S., Morrison, F.D., Smith, R.I.Beales, T.P.: Structure and electrical properties of oxygen-deficient hexagonal BaTiO3. J. Mater. Chem. 9, 1327 1999CrossRefGoogle Scholar
33Macdonald, J.R.: Impedance Spectroscopy Emphasizing Solid Materials and Systems John Wiley & Sons New York 1987Google Scholar
34Inaguma, Y., Chen, L., Itoh, M.Nakamura, T.: Candidate compounds with perovskite structure for high lithium ionic conductivity. Solid State Ionics 70–71, 196 1994CrossRefGoogle Scholar
35Kawai, H.Kuwano, J.: Lithium ion conductivity of A-site deficient perovskite solid solution La0.67−xLi3xTiO3. J. Electrochem. Soc. L78, 141 1994Google Scholar
36Inaguma, Y.Itoh, M.: Influences of carrier concentration and site percolation in lithium ion conductivity in perovskite-type oxides. Solid State Ionics 86–88, 257 1996CrossRefGoogle Scholar
37Belous, A.G.: Synthesis and electrophysical properties of novel lithium ion conducting oxides. Solid State Ionics 90, 193 1996CrossRefGoogle Scholar
38Emery, J., Buzare, J.Y., Bohnke, O.Fourquet, J.L.: Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes. Solid State Ionics 99, 41 1997CrossRefGoogle Scholar
39Harada, Y., Ishigaki, T., Kawai, H.Kuwano, J.: Lithium ion conductivity of polycrystalline perovskite La2/3−xLi3xTiO3 with ordered and disordered arrangements of the A-site ions. Solid State Ionics 108, 407 1998CrossRefGoogle Scholar
40Ibarra, J., Várez, A., León, C., Santamaría, J., Torres-Martinez, L.M.Sanz, J.: Influence of composition on the structure and conductivity of the fast ionic conductors La2/3–xLi3xTiO3. Solid State Ionics 134, 219 2000CrossRefGoogle Scholar
41Stauffer, D.Aharony, A.: Introduction to Percolation Theory Taylor & Francis London 1994Google Scholar
42Inaguma, Y., Matsui, Y., Shan, Y.J., Itoh, M.Nakamura, T.: Lithium ion conductivity in the perovskite-type LiTaO3–SrTiO3 solid solution. Solid State Ionics 79, 91 1995CrossRefGoogle Scholar
43Bohnke, O., Bohnke, C., Sid’Ahmed, J. Ould, Crosnier-Lopez, M.P., Duroy, H., Berre, F. LeFourquet, J.L.: Lithium ion conductivity in new perovskite oxides [AgyLi1−y]3xLa2/3−x◽1/3−2xTiO3 (x = 0.09 and 0 ⩽ y ⩽ 1). Chem. Mater. 13, 1593 2001CrossRefGoogle Scholar
44Rivera, A., Leon, C., Santamaria, J., Varez, A., V’yunov, O., Belous, A.G., Alonso, J.A.Sanz, J.: Percolation limited ionic diffusion in Li0.5−xNaxLa0.5TiO3 perovskites (0 < x < 0.5). Chem. Mater. 14, 5148 2002CrossRefGoogle Scholar
45Ban, C.W.Choi, G.M.: The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates. Solid State Ionics 140, 285 2001CrossRefGoogle Scholar
46García-Martín, S., Morata-Orrantia, A.Alario-Franco, M.Á.: Influence of crystal microstructure on the dielectric response of the La0.67Li0.2Ti0.8Al0.2O3. J. Appl. Phys. 100, 054101 2006CrossRefGoogle Scholar
47Cannon, R.D.: Electron Transfer Reactions Butterworths London 1980Google Scholar
48Allen, G.C.Dyke, J.M.: An investigation of the optical spectrum of lithium doped nickel oxide. Chem. Phys. Lett. 37, 391 1976CrossRefGoogle Scholar
49Bosman, A.J.Crevecoeur, C.: Dipole relaxation losses in CoO doped with Li or Na. J. Phys. Chem. Solids 29, 109 1968CrossRefGoogle Scholar
50Reuter, B., Riedel, E.Buxbaum, G.: Über Oxidsysteme mit Übergangsmetallionen in verschiedenen Oxydationsstufen. VII. Das System Mn(NixV2−x)O4. Z. Anorg. Allg. Chem. 367, 113 1969CrossRefGoogle Scholar