Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:52:57.695Z Has data issue: false hasContentIssue false

The mechanism of sputter-induced epitaxy modification in YBCO (001) films grown on MgO (001) substrates

Published online by Cambridge University Press:  31 January 2011

Y. Huang
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
B. V. Vuchic
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
M. Carmody
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
P. M. Baldo
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
D. B. Buchholz
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201
S. Mahajan
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201
J. S. Lei
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201
P. R. Markworth
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201
R. P. H. Chang
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201
L. D. Marks
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201
Get access

Abstract

The sputter-induced epitaxy change of in-plane orientation occurring in YBa2Cu3O7-x (001) thin films grown on MgO (001) substrates by pulsed organo-metallic beam epitaxy (POMBE) is investigated by a series of film growth and characterization experiments, including RBS and TEM. The factors influencing the orientation change are systematically studied. The experimental results suggest that the substrate surface morphology change caused by the ion sputtering and the Ar ion implantation in the substrate surface layer are not the major factors that affect the orientation change. Instead, the implantation of W ions, which come from the hot filament of the ion gun, and the initial Ba deposition layer in the YBCO film growth play the most important roles in controlling the epitaxy orientation change. Microstructure studies show that a BaxMg1-xO buffer layer is formed on top of the sputtered substrate surface due to Ba diffusion into the W implanted layer. It is believed that the formation of this buffer layer relieves the large lattice mismatch and changes the YBCO film from the 45° oriented growth to the 0° oriented growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Daly, K. P., Dozier, W. D., Burch, J. F., Coons, S. B., Hu, R., Platt, C. E., and Simon, R. W., Appl. Phys. Lett. 58, 543 (1991).CrossRefGoogle Scholar
2.Jia, C. L., Kabius, B., Urban, K., Herrmann, K., Schubert, J., Zander, W., and Braginski, A. I., Physica C 196, 211 (1992).CrossRefGoogle Scholar
3.Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
4.Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).Google Scholar
5.Lu, H. B., Huang, T. W., Wang, J. J., Lin, J., Tu, S. L., Yang, S. J., and Hsu, S. E., IEEE Trans. Appl. Supercond. 3, 2325 (1993).CrossRefGoogle Scholar
6.Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).CrossRefGoogle Scholar
7.Ijsselsteijn, R. P. J., Hilgenkamp, J. W. M., Eisenberg, M., Vittoz, C., Flokstra, J., and Rogalla, H., J. Allo. Comp. 195, 231 (1993).Google Scholar
8.Chew, N. G., Goodyear, S. W., Humphreys, R. G., Satchell, J. S., Edwards, J. A., and Keene, M. N., Appl. Phys. Lett. 60, 1516 (1992).CrossRefGoogle Scholar
9.Chew, N. G. (1992), private communication.Google Scholar
10.Vuchic, B. V., Merkle, K. L., Dean, K. A., Buchholz, D. B., Chang, R. P. H., and Marks, L. D., J. Appl. Phys. 77, 2591 (1995).CrossRefGoogle Scholar
11.Vuchic, B. V., Merkle, K. L., Funkhouser, J. W., Buchholz, D. B., Dean, K. A., Chang, R. P. H., and Marks, L. D., IEEE Trans. Appl. Supercond. (1995).Google Scholar
12.Vuchic, B. V., Merkle, K. L., Baldo, P. M., Dean, K. A., Buchholz, D. B., Chang, R. P. H., Zhang, H., and Marks, L. D., Physica C 270, 75 (1996).Google Scholar
13.Buchholz, D. B., Lei, J. S., Mahajan, S., Markworth, P. R., Chang, R. P. H., Hinds, B., Marks, T. J., Schindler, J. L., Kannewurf, C. R., Huang, Y., and Merkle, K. L., Appl. Phys. Lett. 68, 3037 (1996).CrossRefGoogle Scholar
14.Aindow, M., Cheng, T. T., and Norris, D. D., Philos. Mag. Lett. 74, 267 (1996).CrossRefGoogle Scholar
15.Gervais, A. and Keller, D., Physica C 246, 29 (1995).Google Scholar
16.Huang, Y., Vuchic, B. V., Buccholz, D. B., Merkle, K. L., and Chang, R. P. H., Proc. 54th Annu. meeting, MSA, edited by Bailey, G. W. (San Francisco Press, San Francisco, CA, 1996), p. 372.Google Scholar
17.Hwang, D. M., Ravi, T. S., Ramesh, R., Chan, S-W., and Chen, C. Y., Appl. Phys. Lett. 57, 1690 (1990).CrossRefGoogle Scholar
18.Kamei, M., Aoki, Y., Ogota, S., Usui, T., and Morishita, T., J. Appl. Phys. 74, 436 (1993).CrossRefGoogle Scholar
19.Lee, S-T., Chen, S., Hung, L. S., and Braunstein, G., Appl. Phys. Lett. 55, 286 (1989).CrossRefGoogle Scholar
20.LePaven-Thivet, C., Guilloux-Viry, M., Padiou, J., Perrin, A., Sergent, M., deVaulchier, L. A., and Bontempts, N., Physica C 244, 231 (1995).CrossRefGoogle Scholar
21.Li, Q., Meyer, O., Xi, X. X., Geerk, J., and Linker, G., Appl. Phys. Lett. 55, 310 (1989).Google Scholar
22.McKernan, S., Narton, M. G., and Carter, C. B., J. Mater. Res. 7, 1052 (1992).Google Scholar
23.Norton, M. G., Tietz, L. A., Summerfelt, S. R., and Carter, C. B., Appl. Phys. Lett. 55, 2348 (1989).CrossRefGoogle Scholar
24.Norton, M. G. and Carter, C. B., J. Cryst. Growth 110, 641 (1991).Google Scholar
25.Norton, M. G. and Carter, C. B., Scanning Microsc. 6, 385 (1992).Google Scholar
26.Pennycook, S. J., Chisholm, M. F., Jesson, D. E., Feenstra, R., Zhu, S., Zheng, X. Y., and Lowndes, D. J., Physica C 202, 1 (1992).CrossRefGoogle Scholar
27.Ramish, R., Hwang, D., Ravi, T. S., Inam, A., Barner, J. G., Nazar, L., Chan, S. W., Chen, C. Y., Dutta, B., Benkatesan, T., and Wu, X. D., Appl. Phys. Lett. 56, 2243 (1990).Google Scholar
28.Ravi, T. S., Hwang, D. M., Ramesh, R., Chan, S. W., Nazar, L., Chen, C. Y., Inam, A., and Venkatesan, T., Phys. Rev. B 42, 10 141 (1990).CrossRefGoogle Scholar
29.Savvides, N. and Katsaros, A., Physica C 226, 23 (1994).Google Scholar
30.Shin, D. H., Silcox, J., Rssek, S. E., Lathrop, D. K., Moeckly, B., and Buhrman, R. A., Appl. Phys. Lett. 57, 508 (1990).Google Scholar
31.Streiffer, S. K., Lairson, B. M., Eom, C. B., Clemens, B. M., and Bravman, J. C., Phys. Rev. B 43, 13007 (1991).Google Scholar
32.Suzuki, H., Fujiwara, Y., Hirotsu, Y., Yamashita, T., and Oikawa, T., Jpn. J. Appl. Phys. 32, 1601 (1993).Google Scholar
33.Suzuki, M. and Sakurai, H., IEEE Trans. Appl. Supercond. 5, 1233 (1995).Google Scholar
34.Traeholt, C., Wen, J. G., Svetchnikov, V., and Zandbergen, H. W., Physica C 230, 297 (1994).Google Scholar
35.Cotter, M., Campbell, S., Edgell, R. G., and Mackpodt, W. C., Surf. Sci. 197, 208 (1988).CrossRefGoogle Scholar
36.Buchholz, D. B., Lei, J. S., Mahajan, S., Markworth, P. R., Chang, R. P. H., Hinds, B., Marks, T. J., Huang, Y., and Merkle, K. L., J. Allo. Comp. 251, 278 (1997).Google Scholar
37.Huang, Y., Vuchic, B. V., Baldo, P., Merkle, K. L., Buchholz, D. B., Mahajan, S., Lei, J. S., Markworth, P. R., and Chang, R. P. H., in Interfacial Engineering for Optimized Properties, edited by Briant, C. L., Carter, C. B., and Hall, E. L. (Mater. Res. Soc. Symp. Proc. 458, Pittsburgh, PA, 1997), p. 497.Google Scholar
38.Duray, S. J., Buchholz, D. B., Song, S. N., Richardson, D. S., Ketterson, J. B., Marks, T. J., and Chang, R. P. H., Appl. Phys. Lett. 59, 1503 (1991).CrossRefGoogle Scholar
39.Huang, Y. and Merkle, K. L., in Specimen Preparation for Transmission Electron Microscopy of Materials IV, edited by Anderson, R. M. and Walck, S. D. (Mater. Res. Soc. Symp. Proc. 480, Pittsburgh, PA, 1997), p. 235.Google Scholar
40.Cotter, M., Campbell, S., Cao, L. L., Egdell, R. G., and Mackrodt, W. C., Surf. Sci. 208, 267 (1989).CrossRefGoogle Scholar