Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T06:38:24.826Z Has data issue: false hasContentIssue false

Mechanism of solid-state reaction for fabrication of new glassy V45Zr22Ni22Cu11 alloy powders and subsequent consolidation

Published online by Cambridge University Press:  03 March 2011

M. Sherif El-Eskandarany*
Affiliation:
Inoue Superliquid Glass Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Yagiyama-Minami 2–1-1, Sendai 982–0807, Japan
Satoru Ishihara
Affiliation:
Inoue Superliquid Glass Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Yagiyama-Minami 2–1-1, Sendai 982–0807, Japan
A. Inoue
Affiliation:
Institute for Materials Research, Tohoku University, Katahira 2–1-1 Sendai, Miyagi 980–8577, Japan
*
a)Address all correspondence to this author. Present address: Mining, Metallurgical and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Nasr City 11371, Cairo, Egypt. e-mail: [email protected]
Get access

Abstract

A single glassy phase of V45Zr22Ni22Cu11 alloy powders was synthesized by milling the elemental alloying powders in an argon atmosphere using a low-energy ball-milling technique. During the early and intermediate stages of milling, the atoms of Zr, Ni, and Cu migrated and diffused into the V (base material) lattice to form a body-centered-cubic (bcc) solid-solution, which transformed into a glassy phase with the same composition upon annealing at 850 K for 300 s in an argon atmosphere differential scanning calorimeter (thermally-enhanced glass formation reaction). As the milling time increased, the powders were subjected to continuous defects and lattice imperfections that led to a gradual change in the free energy so that solid-solution phase was transformed (mechanically enhanced glass formation reaction) to another metastable phase (glassy). Toward the end of the milling processing time, the bcc solid-solution transformed completely into a single glassy phase with the same composition. The glass-transition temperature, the crystallization temperature, and the enthalpy change of crystallization of the fabricated glassy powders were 741 K, 884 K, and −2.18 kJ/mol, respectively. This fabricated glassy alloy showed a wide supercooled liquid region (143 K) of metallic glassy alloy. The glassy powders were compacted in an argon gas atmosphere at 864 K with a pressure of 780 MPa using a hot-pressing technique. The consolidated sample was fully dense (above 99.2°) and maintained its chemically homogeneous glassy structure. The Vickers microhardness of the consolidated glassy V45Zr22Ni22Cu11 alloy was measured and found to be in the range between 6.89 GPa to 7.02 GPa.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benjamin, J.S., Metall. Trans. 1, 2943 (1970).CrossRefGoogle Scholar
2.Koch, C.C., Cavin, O.B., McKamey, C.G., and Scarbrough, J.O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
3.Sherif, M. El-Eskandarany, Aoki, K., and Suzuki, K., J. Less- Common Met. 167, 113 (1990).Google Scholar
4.Sherif, M. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, 1st ed. (William Andrew Publishing, New York, 2001), pp. 142-173.Google Scholar
5.Inoue, A., Bulk Amorphous Alloys: Practical Characteristics and Applications, edited by Magini, M. and F.H.Wulbier (Trans Tech Publications, Uetikon-Zuerich, Switzerland, 1999), pp. 140-141.Google Scholar
6.Gottschall, J., Mater. Trans., JIM 42, 548 (2001).CrossRefGoogle Scholar
7.Inoue, A., Matsuki, K., and Masumoto, T., Mater. Trans., JIM 31, 148 (1990).CrossRefGoogle Scholar
8.Bartusch, B., Schurack, F., and Eckert, J., Mater. Trans., JIM 43, 1979 (2002).CrossRefGoogle Scholar
9.Sherif, M. El-Eskandarany, Zhang, W., and Inoue, A., J. Mater. Res. 17, 2447 (2002).Google Scholar
10.Sherif, M. El-Eskandarany and Inoue, A., Metall. Mater. Trans. A 33A, 135 (2002).Google Scholar
11.Sherif, M. El-Eskandarany, Saida, J., and Inoue, A., Acta Mater. 50, 2725 (2002).Google Scholar
12.Sherif, M. El-Eskandarany, Saida, J., and Inoue, A., Acta Mater. 51, 1481 (2003).CrossRefGoogle Scholar
13.Sherif, M. El-Eskandarany, Saida, J., and Inoue, A., J. Mater. Res. 18, 250 (2003).Google Scholar
14.Sherif, M. El-Eskandarany, Wei Zhang, and Inoue, A., J. Alloys Compd. 350, 222 (2003).CrossRefGoogle Scholar
15.Inoue, A., Amorphous and Nanocrystalline Materials; Preparation, Properties and Applications, edited by Inoue, A. and Hashimoto, K., (Springer Publishing, Berlin, Germany, 2001), pp. 47-48.Google Scholar
16.Kawamura, Y., Inoue, A., and Masumoto, T., Scripta Mater. 29, 25 (1993).CrossRefGoogle Scholar
17.Shen, B., Kimura, H., Inoue, A., Omori, M., and Okubo, A., Mater. Trans., JIM 43, 1961 (2002).CrossRefGoogle Scholar
18.Ishihara, S., Zhang, W., and Inoue, A., Scripta Mater. 47, 231 (2002).CrossRefGoogle Scholar
19.Kawamura, Y., Shibata, T., Inoue, A., and Masumoto, T., Scripta Mater. 37, 431 (1997).CrossRefGoogle Scholar
20.Kawamura, Y., Nakamura, T., and Inoue, A., Mater. Sci. Forum 304–306, 349 (1999).CrossRefGoogle Scholar
21.Sagel, A., Wunderlich, R.K., and Fecht, H-J., Mater. Sci. Forum 235–238, 389 (1997).Google Scholar
22.Sagel, A., Wunderlich, R.K., Perepezko, J.H., and Fecht, H-J., Appl. Phys. Lett. 70, 580 (1997).CrossRefGoogle Scholar
23.Sagel, A., Wunderlich, R.K., and Fecht, H-J., Mater. Sci. Forum 269–272, 81 (1998).CrossRefGoogle Scholar
24.Schwarz, R.B., Petrich, R.R., and Saw, C.K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
25.Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
26.Schwarz, R.B., and Petrich, R.R., J. Less-Common Met. 140, 171 (1988).CrossRefGoogle Scholar
27.Sherif, M. El-Eskandarany, Aoki, K., Sumiyama, K., and Suzuki, K., Acta Mater. 50, 1113 (2002).CrossRefGoogle Scholar
28.Atzmon, M., Unruh, K.M., and Johnson, W.L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
29.Sagel, A., Sieber, H., Fecht, H-J., and Perepezko, J.H., Acta Mater. 46, 4233 (1998).CrossRefGoogle Scholar
30.Sherif, M. El-Eskandarany, Aoki, K., and Suzuki, K., J. Appl. Phys. 71, 2924 (1992).Google Scholar
31.El-Eskandarany, M. Sherif, Metall. Mater. Trans. A 27A, 3267 (1996).CrossRefGoogle Scholar
32.El-Eskandarany, M. Sherif, J. Alloys Compd. 284, 295 (1999).CrossRefGoogle Scholar
33.Sherif, M. El-Eskandarany and Inoue, A., Metall. Mater. Trans. A 33A, 2145 (2002).Google Scholar
34.Bormann, R., Mater. Sci. Eng. A 179/A180, 31 (1994).CrossRefGoogle Scholar
35.Greer, A.L., Science, 267, 1947 (1995).CrossRefGoogle Scholar
36.Sherif, M. El-Eskandarany, Matsushita, M., and Inoue, A., J. Alloys Compd. 329, 239 (2001).Google Scholar
37.Greer, A.L., J. Less-Common Met. 140, 327 (1988).CrossRefGoogle Scholar
38.Sherif, M. El-Eskandarany, Aoki, K., and Suzuki, K., Scripta Metall. Mater. 25, 1695 (1991).Google Scholar
39.Fecht, H-J. and Johnson, W.L., Nature (London) 334, 50 (1988).CrossRefGoogle Scholar
40.Huang, J.Y., Wu, Y.K., and Ye, H.Q., Acta Mater. 44, 1201 (1996).CrossRefGoogle Scholar
41.Manna, I., Chattopadhyay, P.P., Banhart, F., and Fecht, H-J., Appl. Phys. Lett. 81, 4136 (2002).CrossRefGoogle Scholar
42.Sherif, M. El-Eskandarany, Aoki, K., Sumiyama, K., and Suzuki, K., Appl. Phys. Lett. 70, 1679 (1997).CrossRefGoogle Scholar
43.Schwarz, R.B., Mater. Sci. Forum 269–272, 665 (1998).CrossRefGoogle Scholar
44.Palvov, V.A., Phys. Met. Metallogr. 59, 1 (1985).Google Scholar
45.El-Eskandarany, M. Sherif, J. Alloys Compd. 296, 175 (2000).CrossRefGoogle Scholar
46.El-Eskandarany, M. Sherif, J. Alloys Compd. 305, 219 (2000).Google Scholar